

This is part of an ongoing series to educate about the simplicity and power of the Kusto Query Language (KQL). If

you’d like the 90-second post-commercial recap that seems to be a standard part of every TV show these days…

The full series index (including code and queries) is located here:

https://aka.ms/MustLearnKQL

This book is updated every time a new part of this series is posted. The most current edition of this book will

always be located at: https://github.com/rod-trent/MustLearnKQL/tree/main/Book_Version

Book release ver. 4.01, August 22, 2022 12:31pm EST

https://aka.ms/MustLearnKQL
https://github.com/rod-trent/MustLearnKQL/tree/main/Book_Version

Contents
Must Learn KQL Part 1: Tools and Resources .. 6

Reference ... 6

Practice Environments .. 7

Actual Books ... 7

Tools ... 7

Blogs, Websites, and Social ... 7

Video .. 8

GitHub Query Examples ... 8

Must Learn KQL Part 2: Just Above Sea Level .. 8

Must Learn KQL Part 3: Workflow .. 12

A Common KQL Workflow .. 13

Must Learn KQL Part 4: Search for Fun and Profit .. 16

Must Learn KQL Part 5: Turn Search into Workflow .. 20

Must Learn KQL Part 6: Interface Intimacy ... 23

Filtering through the table elements ... 24

Sorting results .. 24

Grouping results ... 25

Selecting columns to display .. 26

Select a time range .. 27

Charts ... 28

EXTRA .. 29

Save search queries .. 29

Share Queries! ... 30

Format query .. 31

Queries Galore .. 32

Exporting Queries .. 32

New Alert Rule ... 33

Pin to Dashboard or Workbook .. 33

Settings .. 35

In-UI Reference .. 36

Tabs ... 37

Keyboarding Shortcuts .. 37

Intellisense for the Win ... 38

Must Learn KQL Part 7: Schema Talk .. 40

Column Types .. 42

Back to the UI ... 42

Schema Area Focus ... 44

Must Learn KQL Part 8: The Where Operator ... 48

Hands-on Recommendations ... 48

Where Operator .. 48

Must Learn KQL Part 9: The Limit and Take Operators ... 52

Must Learn KQL Part 10: The Count Operator ... 55

Must Learn KQL Part 11: The Summarize Operator .. 59

Must Learn KQL Part 12: The Render Operator ... 62

Must Learn KQL Part 13: The Extend Operator .. 67

Must Learn KQL Part 14: The Project Operator ... 72

Must Learn KQL Part 15: The Distinct Operator .. 76

All YOU, baby! ... 78

Must Learn KQL Part 16: The Order/Sort and Top Operators .. 79

Must Learn KQL Part 17: The Let Statement ... 81

Creating Variables from Scratch .. 82

Creating Variables from Existing Data .. 83

Creating Variables from Microsoft Sentinel Watchlists ... 83

Must Learn KQL Part 18: The Union Operator.. 85

Must Learn KQL Part 19: The Join Operator .. 87

Must Learn KQL Part 20: Building Your First Microsoft Sentinel Analytics Rule .. 90

Analytics Rule .. 91

Take the Assessment! .. 95

Prepare for What’s Next! .. 96

LASTLY ... 97

Must Learn KQL Part 1: Tools and Resources

After hearing that our customers’ largest barrier to using things like Defender, Microsoft Sentinel and even

reporting for Intune is KQL, the query language, that was a wake-up call for me. And, of course, (if you

know me) I want to do something about it. KQL is a beautifully simple query language to learn. And,

believe me – if I can learn it, there’s no question that you can learn it. I feel bad that there’s just not

enough knowledge around it because I’ve taken for granted that everyone already had the proper

resources to become proficient. But that’s not the case.

Internally, plans are being developed now to make KQL learning a bigger focus and you’ll see new

education around this query language start to take shape in various areas on the Microsoft properties and

elsewhere. So, that’s good news for everyone.

There’s bits and pieces already scattered about the Internet, but they are seemingly now difficult to

identify and locate.

So, as a first step in a series that I’ll be writing called “Must Learn KQL“, I want to supply some good

resources that can be used to accomplish the other things I’ll talk about going forward. Some of these I

use every day. Some I use only when the need arises, but they’re valuable, nonetheless. This is a working

document, so expect updates over time. This is not a definitive list by any means, so if you have other

resources not listed here that you find valuable and believe others would benefit, let me know and I’ll add

them in.

Stay tuned as I map out this series. Of course, since my area of forte at Microsoft is security, the series will

be security focused. So, the knowledge you gain will help you with our security platforms but also

anything data centric that utilizes KQL.

One last tidbit of a tip… I use Microsoft Edge’s Collections feature quite a bit. This is an extremely useful

tool for capturing and grouping topics. If you find any of the links below valuable, I suggest using Edge

Collections so you can always come back to them later.

BIG NOTE: If you’re reading a paperback or hardcover edition of this book, please go to

https://aka.ms/MustLearnKQL to gain access to the actual links provided in this book.

Reference

The code repository for this series (GitHub)

Kusto Query Language Reference Guide

Azure Monitor Logs table reference

Marcus Bakker’s Kusto Query Language (KQL) – cheat sheet

SQL to Kusto cheat sheet

Splunk to Kusto Query Language map

https://aka.ms/MustLearnKQL
https://github.com/rod-trent/MustLearnKQL/tree/main/Examples
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-category
https://github.com/marcusbakker/KQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/sqlcheatsheet
https://github.com/MicrosoftDocs/dataexplorer-docs/blob/main/data-explorer/kusto/query/splunk-cheat-sheet.md

Kusto Query Language in Microsoft Sentinel

Useful resources for working with Kusto Query Language in Microsoft Sentinel

Practice Environments

Write your first query with Kusto Query Language (Learn module)

KQL Playground – only need a valid Microsoft account to access.

Data Explorer – not security focused. Contains things like geographical data and weather patterns.

Exercises for this can be found in the Learn Azure Sentinel book below.

Actual Books

Learn Azure Sentinel: Integrate Azure security with artificial intelligence to build secure cloud systems –

this book uses Data Explorer (see above) for hands-on exercises.

Microsoft Sentinel in Action: Architect, design, implement, and operate Microsoft Sentinel as the core of

your security solutions – this book is the next edition of the one just above and also used Data Explorer

for hands-on examples.

Tools

Kusto.Explorer – a rich desktop application that enables you to explore your data using the Kusto Query

Language in an easy-to-use user interface.

Kusto CLI – a command-line utility that is used to send requests to Kusto, and display the results.

Visual Studio Code with the Kusto extensions pack

Real-Time KQL – eliminates the need to ingest data first before querying by processing event streams with

KQL queries as events arrive, in real-time

getschema operator – As I noted in Part 5 of this series: this is the Rosetta stone of KQL operators. When

used, getschema displays the Column Name, Column Ordinal, Data Type, and Column Type for a table.

This is important information for filtering data. Part 5 talks about this.

Blogs, Websites, and Social

#MustLearnKQL – the official Twitter hashtag of this series

The #KQL hashtag on Twitter

The #365daysofkql hashtag on Twitter

Kusto King

The KQL Cafe = podcast and community

https://docs.microsoft.com/en-us/azure/sentinel/kusto-overview
https://docs.microsoft.com/en-us/azure/sentinel/kusto-resources
https://docs.microsoft.com/en-us/learn/modules/write-first-query-kusto-query-language/
https://aka.ms/LADemo
https://aka.ms/DataExplorer
https://amzn.to/3OP16fr
https://amzn.to/3OzhXmd
https://amzn.to/3OzhXmd
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-explorer
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-cli
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=rosshamish.kuskus-extensions-pack#:~:text=Extensions%20%20%20%20Kuskus%20Kusto%20Extension%20Pack,Document%20%20...%20%201%20more%20rows%20
https://pypi.org/project/realtimekql/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator
https://azurecloudai.blog/2020/09/01/unleash-the-rosetta-stone-of-schema-knowledge-for-your-azure-sentinel-data/#:~:text=getschema%20is%20a%20powerful%20and%20useful%20operator%20for,try%20and%20let%20me%20know%20what%20you%20think.
https://azurecloudai.blog/2020/09/01/unleash-the-rosetta-stone-of-schema-knowledge-for-your-azure-sentinel-data/#:~:text=getschema%20is%20a%20powerful%20and%20useful%20operator%20for,try%20and%20let%20me%20know%20what%20you%20think.
https://twitter.com/search?q=%23MustLearnKQL
https://twitter.com/search?q=%23KQL
https://twitter.com/search?q=%23365DaysofKQL
https://www.kustoking.com/
https://kqlcafe.github.io/website/

Video

TeachJing’s KQL Tutorial Series

Recon your Azure resources with Kusto Query Language (KQL)

How to start with KQL?

Azure Sentinel webinar: KQL part 1 of 3 – Learn the KQL you need for Azure Sentinel

Azure Sentinel webinar: KQL part 2 of 3 – KQL hands-on lab exercises

Azure Sentinel webinar: KQL part 3 of 3 – Optimizing Azure Sentinel KQL queries performance

Querying Azure Log Analytics (with KQL)

GitHub Query Examples

My GitHub repo for Microsoft Sentinel KQL

The official Microsoft Sentinel repo

Wortell’s KQL queries

Clive Watson’s KQL queries and workbooks

Matt Zorich’s (the originator of the #365daysofkql Twitter hashtag) KQL queries

Must Learn KQL Part 2: Just Above Sea Level

To start the journey learning KQL in this Must Learn KQL series, it’s helpful to understand where the name

KQL came from and why the reference makes so much sense. Once you understand the idea behind the

query language, a lightbulb should go off and prepare you for the rest of the series through an expanded

scope of learning capability.

Plus, not everyone knows about this, so you’ll be the cool kid. And, if you ever play Trivial Pursuit and this

question comes up, you’ll win the pie piece and possibly the entire game. How can that not be good

knowledge?

The question?

https://www.youtube.com/watch?v=UwcBvVkTCpc&list=PLM3TOIlrnaI4hwmXTxrYGE665q-9fyTfB
https://www.youtube.com/watch?v=DuWBLsgqhaI
https://www.youtube.com/watch?v=ocmfWMPqZPM&t=290s
https://www.youtube.com/watch?v=EDCBLULjtCM
https://www.youtube.com/watch?v=YKD_OFLMpf8
https://www.youtube.com/watch?v=jN1Cz0JcLYU
https://www.youtube.com/watch?v=92oJ20XeQso
https://github.com/rod-trent/SentinelKQL
https://aka.ms/ASGitHub
https://github.com/wortell/KQL
https://github.com/clivewatson/KQLpublic
https://github.com/reprise99/Sentinel-Queries

Where does the name Kusto come from? (from Kusto Query

Language)

To help explain this, I harken back to my childhood. Bear with me for a minute…

Growing up, my family was one of those families that attended church anytime the church doors were

open. As such, the majority of my parents’ friends were at church. This meant that they would spend time

before and after church services catching up with their friends, sometimes in a local restaurant where

they’d all gather to have pie and coffee. Of course, Facebook didn’t exist then, so in-person connections

were even more important. Well…and there was pie. My mom wanted to catch up with everyone she

hadn’t seen in a few days so this meant that our round-trip from home to church and back could take 3-4

hours.

On Sunday nights this was particularly problematic for me in that I wanted to rush home to catch TV

shows like the Six Million Dollar Man, The Magical World of Disney, Mutual of Omaha’s Wild Kingdom, and

the TV show that’s the topic of our discussion here: The Undersea World of Jacques Cousteau…

That’s right. KQL is named after the undersea pioneer, Jacques Cousteau.

I loved this TV series. It was absolutely enthralling to me to understand that an entire world existed

beneath the ocean waves and this unknown world was being brought to me by this wonderful, thick-

accented explorer each week who dedicated his life to discovering what existed beneath the surface

depths.

So, as you can imagine, I tried my dead-level best every Sunday night to rush my mom along. It didn’t

always work and was mostly just annoying, and you can bet I caught a few groundings from my insistence.

But, still, this topic of discovering the undiscoverable drove me to concoct every type of machination

imaginable to get home sooner on Sunday nights. I can’t tell you the number of times I faked illness on

https://www.imdb.com/title/tt0071054/?ref_=nv_sr_srsg_0
https://www.imdb.com/title/tt0046593/?ref_=nv_sr_srsg_0
https://www.imdb.com/title/tt0121949/?ref_=nv_sr_srsg_0
https://www.imdb.com/title/tt0192937/?ref_=fn_al_tt_1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/jacques.png?ssl=1

Sunday afternoon in attempt to stay home Sunday night. And, as you can imagine my mom quickly caught

on and instituted a policy that if I stayed home on Sunday nights, I couldn’t go to school on Monday.

Which…at the time…I truly loved school, so that halted that plan. Give me a few years, and that wouldn’t

have worked. Timing is everything.

So, KQL is named after Jacques Cousteau. Even today, you can find evidence of this in our own Azure

Monitor Docs. If you go to the datatable operator page right now, you’ll still find a reference to Mr.

Cousteau in an example that lists his date of birth, the date he entered the naval academy, when he

published his first book entitled “The Silent World: A Story of Undersea Discovery and Adventure,” and the

date of his passing.

So, I hope you’re catching on to this. If not, what is it that we are trying to accomplish when we query data

tables for security purposes? What is it that we’re trying to accomplish though Hunting exercises and

operations?

The answer? We are exploring the depths of our data. We are attempting to surface the critical and

necessary security information that will tell us about potential exposure through simple, powerful queries.

Much like the story of the failed voyage of the Titanic. It wasn’t the beautiful, pristine, easy-to-see and

avoid iceberg mass that existed above the surface of the ocean that sunk the unsinkable ship and sent

over 1,500 people to their grave. No, it was the huge mass under the surface that the captain and crew

couldn’t see and couldn’t swerve to avoid that doomed the luxury passenger liner.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/datatableoperator?pivots=azuredataexplorer
https://amzn.to/3yLizP4
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/datatable.png?ssl=1

And, like that, it’s the information that exists underneath the viewable rows and columns of data in our

tables that we need to expose to identify threats and compromise and use to guard the gates. Just the

initial rows and columns of exposed data isn’t enough. We must delve into the depths of the data to find

actionable information. And we need to do it quickly.

I hope all this makes sense.

It’s as important to know why we do things, sometimes, as how to do them. Like Jacque Cousteau, security

folks are explorers. We are mining the depths of the data no one sees to protect the environment against

ever-growing and constantly evolving threats. We are discovering the undiscoverable.

KQL is an amazing and important piece of this capability. KQL was developed to take advantage of the

power of the cloud through clustering and compute. Using this capability, KQL is designed as a well-

performing tool to help surface critical data quickly. This is a big part of why it works so well and outshines

many other query languages like it. KQL was built for the cloud and to be used against large data sets.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/DangerData.png?ssl=1

As a security person, you know that if a threat exists in the environment, you are on the clock to discover

it, report it, investigate it, and remediate. A poorly performing query language can be the biggest barrier

to that and become a security flaw. I’ve sat with customers who use other query languages and other

SIEM-like tools that thought it was status quo that query results would take hours or sometimes days.

When I showed that KQL produced those same results in seconds, they were astonished. So, the

technology and infrastructure behind the query language is also critically important.

In the next post, I’ll talk about the actual structure of a query. Even though the structure can deviate,

understanding a common workflow of a KQL query can have powerful results and help you develop the

logic needed to build your own workflows when it’s time to create your own queries. In addition to being

well-performing to enhance efficiency, the query language itself is simple to use and learn which, in turn,

makes for more efficiency.

So, while we’re Just Above Sea Level in this post (I hope you now appreciate the reference), we’ll be using

KQL as the sonar and diving bell to search the depths of our data.

Must Learn KQL Part 3: Workflow

As I noted in Part 2 of this Must Learn KQL series…

Even though the structure can deviate, understanding a common workflow of a KQL query

can have powerful results and help you develop the logic needed to build your own

workflows when it’s time to create your own queries.

Rod Trent, November 18, 2021

The workflow (some folks call it logic, others call it anatomy, even others call it something else) is a big step

into wrapping your mind around how to produce a KQL query. Just like a developer, assigning uniform,

repeatable steps ensure you’re not missing something and that your query results will produce the

information you are looking to capture.

I tell customers all the time that it’s not necessary to be a pro at creating KQL queries. It’s OK not to be a

pro on day 1 and still be able to use tools like Microsoft Sentinel to monitor security for the environment.

As long as you understand the workflow of the query and can comprehend it line-by-line, you’ll be fine.

Because ultimately, the query is unimportant. Seriously. What’s important for our efforts as security folks

is the results of the query. The results contain the critical information we need to understand if a threat

exists and then – if it does exist – how that threat occurred from compromise to impact.

Now, those that go on to develop their own queries and own Sentinel Analytics Rules after becoming a

KQL pro will be much more capable. And that should be your goal, too. BUT don’t get hung up on that.

Again, it’s about the results.

We’ve made it so crazily easy to share KQL queries that it’s quite possible you may never have to create

your own KQL query (aside: I highly doubt it but COULD BE possible).

In a future post in this series, I’ll go over the actual interface you use to write and run the KQL queries in-

depth but suffice to say that almost every service in Azure has a Logs blade (option in the Azure portal

interface/menu) to accommodate querying that service’s logs. This area provides for saving your queries,

but also to share your queries.

Share your queries

Because of this built-in capability, many of our customers regularly share their creations with each other,

other colleagues, to their own blogs and GitHub repos, and even to the official Microsoft Sentinel GitHub

repository (https://aka.ms/ASGitHub). In Part 1 of this series, I supplied links to these and more. So, to

prove my point…yes, it’s absolutely possible you might not have to write your own KQL query for a long

time.

So, because of that, it becomes even more critical that you at least understand the workflow. Again, if you

can read a query line-by-line and determine that the results will produce what you are looking for, you’re

golden. If, through your newfound understanding, the query can’t meet your requirements, you can

modify it by line instead of a wholesale adaptation. This should be your first KQL goal: read queries.

Through this series, I’ll provide queries for you to use and get hands-on experience because I believe in

learning by doing. We’ll be using the links in the Practice Environments section in Part 1 for hands-on.

But focus initially more on the structure and logical workflow.

And, with that…

A Common KQL Workflow

To get started on the journey to learning KQL, let’s look at the standard workflow of a common search

query. Not the search operator (I’ll talk about in the next post), but the search query. This is the query

structure we use to search, locate information, and produce results.

https://aka.ms/ASGitHub
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/sharethis.png?ssl=1

The following represents the common workflow of a KQL search query.

P.S. I’ve enabled image linking in this post so you can click or tap to open the image in a larger view. So, you can

open the image in a new window or new tab to better follow along.

Let’s break this query down by the steps.

1. The first step is to identify the table we want to query against. This table will contain the

information that we’re looking for. In our example here, we’re querying the SecurityEvent table.

The SecurityEvent table contains security events collected from windows machines by

Microsoft Defender for Cloud or Microsoft Sentinel. For a full list of all services tables, see

the Azure Monitor Logs table reference (also available in Part 1).

2. The pipe (|) character (the shifted key above the Enter key on most keyboards) is used to

separate commands issued to the query engine. You can see here that each command is on its

own line. It doesn’t have to be this way. A KQL query can actually be all one single line. For our

efforts, and as a recommendation, I prefer each command on its own line. For me, it’s just

neater and more organized which makes it easier to troubleshoot when a query fails or when I

need to adjust the query to produce different results.

3. Next, we want to filter the data in some way. If I simply entered the table and ran that as its

own, single query, it would run just fine. Doing that returns all rows and columns (up to a limit –

which I believe is now 50,000 rows) of the data stored in the table. But our goal is getting exact

data back. As an analyst looking for threats, we don’t want to have to sift through 50,000 rows

of data. No, we want to look for specific things. The Where operator is one of the best ways to

accomplish this. You can see here in the example that I’m filtering first by when the occurrence

happened (TimeGenerated) and then (remember the pipe character – another line, another

command) by a common Windows Event ID (4624 – successful login).

4. The next step in our workflow is to provide data aggregation. What do we want to do with this

filtered data? In our case in the example, we want to create a count of the Accounts (usernames)

that produced a successful login (EventID 4624) in the last 1 hour (TimeGenerated).

https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-category
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/searchnumbered.png?ssl=1

5. Next let’s tell the query engine how we want to order the results. Using the Order operator, I’m

telling the query engine that when the results are displayed, I want it shown in alphabetical

order by the Account column. The ‘asc’ in the query in the Order Data step is what produces

this ordering. If we wanted descending order, we’d use ‘desc’. Don’t worry, we’ll dig deeper into

each of these operators as we go along in the series.

6. Generally, the last thing that I’ll do with this search query is tell the query engine exactly what

data I want displayed. The Project operator is a powerful command. We’ll dig deeper into this

operator later in this series, but for our step here, I’m telling the query engine that after all my

filtering, data aggregation, and ordering, I only want to display two columns in my results:

Account and SuccessfulLogins

So, let’s recap what this query accomplished…

It searched our stored security events in the SecurityEvent table for all Accounts that had a successful login

in the last hour and chose to display only the Account and number of successful logins per Account in

alphabetical order.

7. Our search query output is exactly that:

Search query output

See that? The Account column is in alphabetical order ascending and the SuccessfulLogons column shows

how many times each Account successfully logged in.

If you need to, jump back through each step above until you get a good understanding of the workflow.

Again, this is very common, and you’ll see this structure many times working with Microsoft Sentinel and

Defender products. Remember, it’s about the results. If you can look at this example and get a good

feeling that you understand how the results were accomplished, line-by-line, you’re on your way.

I invite you, though, to take this example and copy/paste it into a Logs environment to test. You can have

this query to play with it in your own Microsoft Sentinel environment or using the KQL Playground I

provided as a resource in Part 1.

SecurityEvent
| where TimeGenerated > ago (1h)
| where EventID == 4624
| summarize count() by Account
| order by Account asc

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/orderoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://aka.ms/LADemo

| project Account , SuccessfulLogons = count_

This query is also available from the GitHub repository for this blog series: https://aka.ms/MustLearnKQL

I’d like to share one extra tidbit with you that you might find helpful as you start testing this KQL query

example in your own, or our, environment.

Every language (scripting, coding, querying) has the capability to add comments or comment-out code

through special characters. When the query, scripting, or development engine locates these characters, it

just skips them. KQL has this same type of character. The character for KQL is the double forwardslash,

or //

When you start testing this post’s KQL query example, comment-out a line or two (put the double

forwardslash at the beginning of the line) and rerun the query just to see how eliminating a single line can

alter the results. You’ll find that this is an important technique as you start developing your own KQL

queries. I’ll talk about this more later, too.

In the next post (Part 4) I’ll talk through another, yet just as powerful, way to search for information using

KQL that is a top pocket tool for Threat Hunters.

And, then I’ll come back for Part 5 and show how to tie together both search methods to create the full

operation of hunting to Analytics Rule. But don’t worry, that’s not the end. I have no clue how many parts

this series be. A lot of it depends on you.

Must Learn KQL Part 4: Search for Fun and Profit

Now that we have some understanding of the workflow (from Part 3) under our belts, I’m going to deviate

from that for a brief minute in this post and then I’ll bring it back together in Part 5 and combine Parts 4

and 5 to provide something extra meaningful to show you how it all fits together like an unsolved Hardy

Boys mystery novel. Hopefully, you’re starting to see that my efforts here are logical and designed to

accumulate enough knowledge that is necessary to move to the next plane of understanding.

What I want to do in this post, is give you something you can actually use today. When I’m done here, you

should be able to take the knowledge and the query snippets to do your own hunting – or, rather, look

inside your own environment to get an understanding of what is happening that’s worth exposing and

investigating.

One of the easiest ways to get started with KQL is the search operator. In Part 3, I talked through the

structure and workflow of a search query. In this post, I’ll talk about the search operator (or command) and

how it could be the most powerful KQL operator in the universe but will always be the best tool in the

toolbelt to start any search operation.

https://aka.ms/MustLearnKQL
https://amzn.to/3IDeBwi
https://amzn.to/3IDeBwi
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer

Search is the first operator I reach for when trying to verify if something exists within the environment. In

fact, our whole goal for using KQL as a security tool is to answer the following questions:

1. Does it exist?

2. Where does it exist?

3. Why does it exist?

4. BONUS: There’s a final question to this that’s not part of this KQL series, but one that’s important to

the total equation and one that should be part of your SOC processes. That question is: How do we

respond?

If you click or tap the image to open it in a larger view, you’ll see how the power of the search operator

enables you to answer these questions.

It starts with an idea or theory that “something” exists in the environment. You may have gotten this idea

from a dream or nightmare that someone in your organization is performing nefarious activities. But,

most likely, the idea came from a news report or a post on social media from a trusted source about a

nation-state actor being active with a new kind of ransomware.

Once these reports are available, someone (like Microsoft) will supply the Indicators of Compromise (IOCs)

so you can search your environment to see if they exist. IOCs could be several things including filenames,

file hashes, IP addresses, domain names, and more.

If they don’t exist, you move on. If any of them do exist, you start to dig deeper to figure out where they

exist, so you can, for example, quarantine systems or users, or block IP addresses or domains.

And, then you need to determine why they exist. Did a specific user click on something they shouldn’t

have clicked on in an email? Or did a threat actor successfully compromise a Domain Controller through

control over a service or elevate user account? Could it be that there is more impact on your environment

than you originally thought?

All of this can be exposed through the simple process of search using the search operator.

Let’s walk through this together with a few simple queries that you can take and use to test your own

environment. (click or tap the image to open the larger version in a new browser tab to follow along)

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer

Who, What, When, Where?

In step 1 in the image, I’m performing a simple search for a username. In this case, it’s an ego search – I’m

searching in my own environment for my own activity. This could be an IOC that you want to search for.

Just replace my name with the string of text you want to expose in the results.

search "rodtrent"

As you can see in the image, my search produced results, telling me that this thing I searched for does exist

in my environment.

Since it does exist, I want to understand where it exists. I do this by making a simple adjustment to my

original query by adding a line that tells the query engine to just show me the specific tables that my IOC

exists in. This will give me a good indication of what type of activity it was. Step 2 shows…

search "rodtrent"
| distinct $table

Let’s assume that I’m looking for user activity because the reported threat is malware. I know that user

activity is most generally recorded and contained in a few places including Microsoft Office and Defender

for Endpoint.

In my example in Step 3 in the image, I’ve adjusted my search operator query to focus only on the

OfficeActivity table. Here is what that looks like:

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/searchesnos.png?ssl=1

search in (OfficeActivity) "rodtrent"

Now that I have my results of rodtrent’s activity in the OfficeActivity table, I can begin sifting through the

rows and columns of data to learn more about the occurrence and to start to tune my query even more.

Results from the OfficeActivity table

When we come back for Part 5, I’ll show you how to turn your search query into a workflow like I talked

about in Part 3.

One last thing for this post. I mentioned that user activity is generally reported from the Microsoft Office

and Defender for Endpoint tables. I’ve given you examples for searching the OfficeActivity table. But

Defender for Endpoint is more than one table. In fact, Defender for Endpoint consists of the following 10

tables: DeviceEvents, DeviceFileCertificatelnfo, DeviceFileEvents, DevicelmageLoadEvents, Devicelnfo,

DeviceLogonEvents, DeviceNetworkEvents, DeviceNetworklnfo, DeviceProcessEvents, and

DeviceRegistryEvents.

Fortunately, the KQL search operator supports the wildcard character. So, you can search for those IOCs

across the entire Defender for Endpoint solution by doing the following:

search in (Device*) "rodtrent"

And, incidentally, if you have the Defender for 365 Data Connector enabled for Microsoft Sentinel and you

enable the Microsoft Defender for Office 365 logs, the OfficeActivity table isn’t the only Microsoft Office

data you can query. Enabling these logs gives you access to EmailEvents, EmailUrlInfo,

EmailAttachmentInfo, and EmailPostDeliveryEvents tables which means you can take advantage of the

search operator’s wildcard capability here, too.

All of the query code in this post is contained in the series’ GitHub repo here: https://aka.ms/MustLearnKQL

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer
https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/resultsnow.png?ssl=1

P.S. Enjoying this book? Share it with someone!

Must Learn KQL Part 5: Turn Search into Workflow

Now, that we’ve talked about using the Search operator in Part 4 to answer those three basic SOC analyst

questions of: 1) Does it exist? 2) Where does it exist? and, 3) Why does it exist?, we can take that learning

and the results of that type of query and meld it with the standard search query structure I talked about in

Part 3.

In part 4, I ended with a query to locate activity by a user called “rodtrent“. I found that this rodtrent person

had performed potentially strange activity in the OfficeActivity table (the table for Office 365 activity) that

needs to be checked out. As shown, the search operator is a powerful tool to find things of interest. The

results of the search operator query were thousands of rows of data. That’s inefficient.

So, now that we’ve found something interesting, we want to use the structure of the Search Query to pare

down the results to minimize the effort and workload to identify that that something interesting is actually

something notable and worth investigating.

If you need to, open Part 3 in a new Window or browser Tab to review the Search Query Workflow as I

walk through the next section.

In the following example, note that this is a non-issue situation, but I want to start with a basic Search

query before we start building toward more complex queries in future posts to get a fully rounded

understanding of the “why” behind why we do this. The one below is even simpler than the one discussed

in Part 3 where I also talk about aggregating and ordering data. I’ll come back to those concepts later,

particularly when I get into creating your own in-query visualizations like pie and bar charts. No, for our

efforts in this post, I want to focus on how easy it is to filter the data. Again, KQL isn’t hard, and some of

your most powerful queries may only be a few lines of code.

Turning your hunting operations into more formal Search structure queries is the building block for

creating your own Analytics Rules in Microsoft Sentinel. Analytics Rules should be precise logic to enable

your operations to focus exactly where it needs to focus; and because, capturing data outside of what was

intended is both inefficient and problematic for isolating actual security events.

The example (available from the series’ GitHub repo at: https://aka.ms/MustLearnKQL):

https://azurecloudai.blog/2021/11/22/must-learn-kql-part-4-search-for-fun-and-profit/?WT.mc_id=m365-0000-rotrent
https://azurecloudai.blog/2021/11/22/must-learn-kql-part-4-search-for-fun-and-profit/?WT.mc_id=m365-0000-rotrent
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer
https://aka.ms/MustLearnKQL

New search query

Let’s break this new Search query down together like was done in Part 3. This one, again, is even a tad bit

simpler than when describing the Search workflow, but as you’ll see, it’s the where operator that is

sometimes our biggest, most powerful, and best workhorse and pal for tuning efficient results.

1. The first step in our workflow is to query the OfficeActivity table. If you remember, from our

time together in Part 4, we’re looking for user activity (in our case the user “rodtrent“) in

Microsoft Office.

2. As per the discussion in Part 3 on workflow, I want to highlight the importance of the pipe

command once again. I don’t rehash the importance here. If you missed it, jump to Part 3 to

catch up.

3. In step 3 of the new Search query, I’m filtering how the query engine searches. I’m first telling to

only look at data in the last 24 hours (TimeGenerated), then only looking through a column

called UserId for the string “rodtrent”, then telling the query engine to only capture Exchange

activity from the RecordType data column, and finally pinpointing the search to only Send

operations. So, essentially, I’m looking for any emails that rodtrent sent in the last 24 hours.

• Filtering the data is the key to everything. <= Read that again. Filtering the data that

is returned produces exact, actionable data. It also improves the performance of our

queries. Where the search operator may return thousands of rows of data in 15

seconds (or less), by properly filtering the data to return exactly what is necessary

returns just the number of rows of data we asked for which greatly improves the

processing time. Where the search operator may have taken 15 seconds, our new

Search structure query will take 5 seconds or less. The Where operator is the key to

this operation. Learn it. Know it. Keep the Where operator reference page

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://azurecloudai.blog/2021/11/19/must-learn-kql-part-3-workflow/?WT.mc_id=m365-0000-rotrent
https://azurecloudai.blog/2021/11/19/must-learn-kql-part-3-workflow/?WT.mc_id=m365-0000-rotrent

handy: https://docs.microsoft.com/en-us/azure/data-

explorer/kusto/query/whereoperator.

4. Finally, I’m using the project operator to control exactly what is show in the results window. In

this case, I only want to show the user, the user’s IP address, and the server where the email

originated from.

The results?

Search query results

As you can plainly see from the query results, this matches exactly what my query proposed.

EXTRA: We saw in Part 4 with our Search operator, how results from our queries are in named rows and

columns of data. And, you see here in this post, how I’m constantly filtering against known column names

in the tables. Some might wonder how I come up with those schema names. Of course, it helps that I work

with these tables constantly, but I do have a couple secrets to share. First off, as noted in Part 1, I use

the Azure Monitor Logs table reference quite a bit. However, there’s also the Rosetta stone of KQL

operators: getschema

Running a simple…

OfficeActivity
| getschema

…will produce a list of all the named columns of a specific table. The example above displays all the

named columns of the OfficeActivity table. Each of these columns can be used in your where

operator filtering efforts.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://azurecloudai.blog/2021/11/22/must-learn-kql-part-4-search-for-fun-and-profit/?WT.mc_id=m365-0000-rotrent
https://azurecloudai.blog/2021/11/17/must-learn-kql-part-1-tools-and-resources/?WT.mc_id=m365-0000-rotrent
https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-category
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator
https://cda.ms/3jg
https://cda.ms/3jg

Must Learn KQL Part 6: Interface Intimacy

I preface this post by saying this: everything discussed in this post about the User Interface (UI) can be

done (and should be done, eventually) in the KQL query itself.

When you’re just starting with KQL, the UI can be a blessing. As you get further in your learning and

comfortability with the query language, it can be a crutch – particularly when you need to find something

quickly because of a perceived security threat and view it in a way that’s most meaningful. Still,

understanding the UI’s capabilities is important.

In this post, I’ll give you a whirlwind tour of the UI, but again with the assumption that, eventually, every

action it provides I’ll cover on how to accomplish it using KQL as we get further and further along in this

series.

The Logs blade exists in almost every Azure service, allowing you to query the activity logs for that service.

For our purposes for Microsoft Sentinel, since all those services’ (and more) logs are consolidated in the

Log Analytics workspace for Microsoft Sentinel, we get to use the UI to query everything. It can be a bit of

a power rush.

For those that already have deep-level experience with the Logs UI in Azure services, this may not be your

favorite part of this series, but you also may learn something you missed or that’s been updated recently,

so make sure not to overlook anything important. And, please, please, PLEASE – if you’re an expert in the

UI and with KQL, pass this along to someone who needs it.

Like everything in Azure, there’s updates and enhancements constantly, so I’ll try to keep this part of the

series up-to-date continually. My youngest son is the epitome of FOMO (fear of missing out) and I feel like

him sometimes when I’ve been away from the Azure portal or the Microsoft Sentinel console for even a

day. Every day can be a new adventure. As a customer, you might think, or even become frustrated, that

it’s hard to keep up with all the changes going on in the Azure services and other products. But, believe

me, those of us that work at Microsoft are faced with the exact same scenario and the same difficulties in

keeping up-to-date. So, we can help each other in this respect. See something in this part of the series

that’s slightly off or maybe improved? Or, maybe I’ve chosen not to cover an area or feature that you need

more knowledge about. Let me know and I’ll get it updated toot sweet.

HANDS-ON: If you’d like to follow along yourself with the UI areas and descriptions in this post (instead of

just reading through them in the text), use the KQL Playground that is referenced as a Practice

Environment in the resources list of Part 1.

https://aka.ms/LADemo

I’ll start this part of the series talking about those areas in the UI that are most important to our efforts in

learning how to manipulate the KQL query data, and then follow up with the rest of the interface in

the Extras section below, so you get the full intimate affair. And don’t forget to come back for Part 7 for

the Schema Talk (see the TOC) where I’ll finish up covering the UI with those areas of the UI that pertain to

working with the tables.

OK…so let’s dig in…

Filtering through the table elements

To focus on a specific column, select the ellipses next to a column heading and choose the Filter icon, then

select values to adjust the results display.

Filtering the columns

The example query in the above and following images is located here: https://aka.ms/MustLearnKQL

Sorting results

To sort the results by a specific column, such as timestamp, click the column title. One click sorts in

ascending order while a second click will sort in descending. An arrow will display in the column next to

the column title to show which direction the results are sorted.

https://aka.ms/MustLearnKQL
https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/filternow.png?ssl=1

Grouping results

To group the results, first toggle the ellipses as you did in Filtering the columns, then choose the

hamburger menu icon to expose the column’s grouping option.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/sorting.png?ssl=1

Grouping columns

Selecting columns to display

To add and remove a column that is displayed select the Columns pane on the right-hand side of the

results display.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/groupingnow.png?ssl=1

You will notice when you work with this UI feature, there are several columns that are omitted from the

results display. There’s some intelligence built in that looks at the table data and only shows results that it

deems pertinent to the operation – in our case, that operation is security monitoring. It also locates

columns that contain no data and omits these from the display. All these measures are intended functions

to help build efficiency and eliminate unnecessary data, but also to improve query results performance.

But, using this feature (and actual KQL operators like project we’ll talk about later on), you can use the UI

to pick and choose what to review.

Select a time range

To add a custom time range, select the Time range option.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/newcolumns.png?ssl=1

Incidentally, 24 hours is the default for Microsoft Sentinel. Each time you enter the console or attempt to

work with KQL in the Logs blade, it will default to this time value. This is based on security principles that a

SOC or security teams should be focused on the most current data. Responsibilities, tasks, policies, and

procedures of a well-tuned security team should ensure that all current events are monitored and

managed in some way at the end of each day so that they are ready for the next round of events. That’s

not always the case, of course, but that’s one reason why Microsoft Sentinel always defaults to 24 hours.

Charts

To add a chart as a visual format you can select the CHART option just above the results window at the

bottom of the UI. On the right-hand side you have many options for manipulating the visual aspect of the

data.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/timerange.png?ssl=1

Generate Charts

Note that charting is dependent on tabular data. I’ll talk about this when we get to the summarize, render,

and bin operators in this series. (See the TOC)

EXTRA

In the previous section, I’ve discussed those areas in the UI that are going to help you manipulate the

results. Again, while those are important areas, I’ll show how to accomplish each of those using actual KQL

query operators, so you don’t have to rely on the UI.

You might notice I didn’t spend any time talking about the Tables, Queries, and Functions areas in the Logs

blade. I’ll come back to those in Part 7 when I talk about the schema. (See the TOC)

But before closing out this part of the series, I do want to also highlight some other cool areas of the UI

that you might enjoy and have fun with.

Save search queries

You can save your queries to Query Packs and then look them up and use them later. For more

information on Query Packs, see: Query packs in Azure Monitor Logs and How to Save an Azure Sentinel

Query to a Custom Query Pack

https://aka.ms/MustLearnKQL
https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/query-packs
https://azurecloudai.blog/2021/07/19/how-to-save-an-azure-sentinel-query-to-a-custom-query-pack/
https://azurecloudai.blog/2021/07/19/how-to-save-an-azure-sentinel-query-to-a-custom-query-pack/
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/newchart2.png?ssl=1

Share Queries!

Sharing your fabulous query creations is an important capability for several reasons and not just for an

ego boost or pat on the back when bragging to friends and colleagues.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/saveit.png?ssl=1

There are three sharing options:

1. Copy link to query: Since the Azure portal and Microsoft Sentinel console are web-based, you

can share the direct URL to the query you created by pasting it somewhere (email, Teams chat

or channel, etc.). When you share the link and someone with proper access clicks on it, they are

taken directly to the Logs blade and the query is run, so they can review the same results. This

is an awesome team activity where you can get an extra set of eyeballs on a potential situation.

2. Copy query text: This function just copies the query itself so you can send that somewhere (to

a team member, to a GitHub repo, etc.)

3. Copy results: Right now, this function literally does the exact same thing as the Copy link to

query option. So, we’ll put a pin here for when this changes in the future.

And, by the way, you can also submit your KQL creations to the official GitHub repository for Microsoft

Sentinel. See Add in your new or updated contributions to GitHub for steps on how to accomplish

that.

Format query

A super-cool, super-useful tool is the Format button in the UI. This button takes a badly formatted query

and reformats it so it a) works, or b) is in a more uniform, more readable format.

https://github.com/Azure/Azure-Sentinel#contributing
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/newshare.png?ssl=1

As I noted in Part 3 about Workflow, because of the power of the pipe (|) command separator, a KQL

query can be a single line of code. But that’s a bit useless if you want to be able to determine what the

query’s intent is or need to debug it. This option turns it into a better format.

Queries Galore

In addition to all the awesome KQL query goodness available from all over the Internet, there’s a slew of

example KQL queries available to access in the Logs blade itself. Just tap or click the Queries button to

gain access.

Exporting Queries

The Export option in the UI gives you the ability to export the query results in a number of ways.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/format.png?ssl=1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/queriesgalore.png?ssl=1

You can export all data to a csv, export only the data in the displayed results, generate an M query for use

in creating a Power BI dashboard, and export and open immediately in Microsoft Excel.

New Alert Rule

You can create rules for either Azure Monitor or Microsoft Sentinel directly from the Logs UI. This is an

awesome feature that allows you to create and tune your query until it’s perfect and then begin the steps

to turn it into a rule to automatically analyze security for your environment. We’re not quite at that step in

this series, so we’ll come back to this feature in Part 21. (See the TOC)

Pin to Dashboard or Workbook

Pin to Dashboard is an interesting feature in that you can take the query results that are formatted as a

chart and pin the visualization directly to the standard Azure portal dashboard. This dashboard can be

your own private collection of visualizations or a collection that is shared among your teammates or even

supplied so your manager has purview into operations.

https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/exportqueries.png?ssl=1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/newalertrule.png?ssl=1

Pin do Azure Dashboard

An additional option here is the ability to send the query to a Workbook. This is useful when you need to

use the Logs blade to develop the query and instead of copying/pasting into an existing Workbook that

you’re currently developing, you can just insert it into the Workbook. Of course, you can create Workbooks

from here using the new queries, too.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/pinttodashboard.png?ssl=1

Send to a Workbook

Settings

I’m not going to dig into each option, but the Settings icon contains configuration adjustments including

things like how double-clicking works, if you want to see tables that contain no data, how many rows per

page should display by default in the results window, and other things.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/sendtoworkbook.png?ssl=1

In-UI Reference

Lastly, to round out this intimate review of the Logs UI, there’s a very good, very solid collection of

references built into the UI. Some of those I’ve already supplied as references in Part 1, but, like everything

in Azure, this is also updated continually. So, keep an eye out here for updates.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/settings.png?ssl=1

Tabs

To help keep you organized, much like a web browser the UI also supports tabs.

Tabbing

This is awesome functionality to allow you to work on different queries or different datasets in each tab. If

you right-click on each tab, there’s a context menu pop-up that allows you manage the tabs in various

ways including duplicating the current query in a new tab.

Keyboarding Shortcuts

If you’re a die-hard keyboarding fan like myself, rest easy knowing that you can help speed up your query

development using a couple key combinations. It’s also for us lazy people who can’t suffer the time to lift

our hands from the keyboard to locate the mouse and click on one of its buttons.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/inappreference.png?ssl=1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/tabs-1.png?ssl=1

Keyboard shortcuts

Shift + Enter causes the query to run. Ctrl + Enter starts a new command line, complete with the

command (pipe (|)) character.

Intellisense for the Win

Much like how addressing an email works, the Logs UI will try everything it can to use autocomplete to try

and figure out what it is you want to accomplish. Just start typing in the query area and the applicable

options will display in a list.

…

But wait…there’s more…

Next, in Part 7 (see the TOC), there’s a bit more of the UI to talk about. But that deserves its own part since

we’ll be talking in relation to working with the tables and the schema.

https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/intellisense.png?ssl=1

Must Learn KQL Part 7: Schema Talk

Before jumping directly into talking through some common KQL operators and providing you example

queries for hands-on learning (see the TOC) in the next part of this series, there’s some lingering discussion

from the last post around the UI, but also how this relates to table schema. I wanted to keep this

information separate from the rest and in its own area because it will help you determine where things

exist in the tables and how to better pinpoint the data. You saw in Part 4 that it’s easy to find anything in

the data. But as you start getting closer and closer to taking the knowledge to develop your very own

Analytics Rules for Microsoft Sentinel, you want to take the learning from Part 5 and go just a tad bit

further. This where an understanding of the schema becomes important.

The table schema is important. As with any data storage function or service, data is collected and stored

– most times appropriately – in organized columns. I noted in Part 5 about the getschema operator for KQL

that produces the list of all columns and their types.

In case you missed it or you forgot…

Example:

OfficeActivity
| getschema

Sample results:

https://aka.ms/MustLearnKQL
https://azurecloudai.blog/2021/12/02/must-learn-kql-part-6-interface-intimacy/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator

Results from getschema

As you can see in the results, getschema shows a lot of great information. It shows the actual column

names that are important to know for what types of information can be found, but also note the DataType

and ColumnType results. These tell us how to query the data – or, rather, the approach we need to take

(the type of KQL operator) to query, extract, and manipulate the data.

Using just the information displayed in the screenshot example, I can see that I can use Part 5’s

knowledge to show regular Exchange users that sent emails. The following example shows that.

OfficeActivity
| where UserType == "Regular"
| where OfficeWorkload == "Exchange"
| where Operation == "Send"
| project UserId, UserDomain

Query example is located at: https://github.com/rod-

trent/MustLearnKQL/blob/main/Examples/Part7OfficeActivityExample.txt

Note that not everything is as neatly stored and defined as the OfficeActivity table in the screenshot. I said

earlier that most times data is stored neatly and orderly. There are exceptions and you need to be aware

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator
https://github.com/rod-trent/MustLearnKQL/blob/main/Examples/Part7OfficeActivityExample.txt
https://github.com/rod-trent/MustLearnKQL/blob/main/Examples/Part7OfficeActivityExample.txt
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/datatype.png?ssl=1

of these. In these cases, you’ll need to utilize some parsing functions of KQL to extract the data yourself.

But let’s not focus on that here in this post. I promise, I’ll dig into that later in the series (see the TOC) just

before creating your first Analytics Rule.

But fortunately, most times data is stored neatly and orderly. This is where the Data Connectors come into

play in Microsoft Sentinel. The parsing is done for you when an actual Data Connector is in play. The

“parser” is part of the Data Connector or the Sentinel Solution. For those situations where an official Data

Connector does not exist, you may be called on to create your own parser. Again, I’ll cover this later in this

series, but I do want to call this out, as it’s important. So, for your efforts as you begin building your KQL

knowledge, stick with the tables that are part of a Data Connector, otherwise you’ll bump off into

unknown territory that can get miry fast.

OK…with this knowledge firmly in-hand, let’s jump back to the UI to talk about some areas in the console

that help shortcut some of this activity.

Column Types

As shown in the screenshot example, there are various KQL column types. Again, knowing these date

column types will alter your approach for querying specific columns. I don’t want to spend a lot of time

here on this so as to not start the varying levels of confusion. But I’ll include this here so I can refer to it

later on in the series.

The KQL column types are…

• Basic

• int, long (numerical types)

• bool: true, false (logical operators)

• string: “example”, ‘example’

• Time

• datetime: datetime(2016-11-20 22:30:15.4), now(), ago(4d)

• timespan: 2d, 20m, time(1.13:20:05.10), 100ms

• Complex

• dynamic: JSON format

For anyone that’s worked with any query language or data format before, these are not uncommon or

new. As I talked about in Part 2, KQL – the query language – was not designed to be difficult nor

revolutionary. The revolutionary part is how it utilizes the power of the cloud (Azure) to accomplish sifting

through mass seas of data quickly and efficiently. No, KQL – the query language – takes the best pieces of

a lot of existing query languages. For example, anyone that’s worked with SQL Server, will have an easy

time with KQL.

Back to the UI

The UI has an area that aids in organizing and customizing the table/schema view, but it also has

capabilities to enable easier and quicker access to KQL query creation. In this post, I’m not going to focus

heavily on areas 2-4. You should be able to figure out how to click through and use most of those on your

https://aka.ms/MustLearnKQL

own. And, while I’ll provide a quick overview of all the areas just now, I’ll circle back and focus on the

Tables area. As you’re getting started learning KQL, this is the important area that will save you a lot of

time learning to create your own queries.

UI Overview:

1. This is the Tables list. This is where you can find all the available tables for which you can create

queries against. We’ll focus on this area just below.

2. This is the Queries list. This tab area contains a slew of pre-made KQL queries that you can

spend hours and days executing, reverse engineering, and all other matters of query learning

importance. These are separated by category types like Applications, Audit, Azure Monitor,

Azure Resources, Containers, Databases, Desktop Analytics, IT & Management Tools, Network,

Security, Virtual Machines, Windows Virtual Desktop, Workloads, and Others.

3. This is the Functions list. A Function is like a stored procedure in SQL, except in our case the query

code is in KQL. This is a hugely useful component of KQL. I’ll cover this in-depth later in the

series (see the TOC). Did you know that the Watchlist feature of Microsoft Sentinel relies heavily

on a Function? If you access the Function tab in the UI, you’ll see the _GetWatchlist function.

4. The Filter tab. The Filter tab is absolutely awesome and delivers another shortcut method of

developing your KQL queries. After running a query the Filter tab will contain a list of empty

data columns that you can select to filter out of the query results. Once a column is selected

and applied, you can see in the screenshot that the query is updated automatically with

the where operator to use as the filter mechanism and then the query is rerun.

The isempty() function is used, which, in itself is a powerful tool that we’ll talk about later in this

series.

https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/isemptyfunction
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/schemastuff.png?ssl=1

Filter tab

Schema Area Focus

I noted in Part 6 that everything that can be done in the UI we should eventually accomplish in the KQL

query itself. That’s still the case here, but the UI provides some neat shortcuts that shouldn’t be

overlooked.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/FilterTab.png?ssl=1

1. First off, every Table in the list can be expanded to show the schema underneath. So, instead of

always resorting to the getschema operator, you can expand the Table while you’re creating

your queries to have a quick-glance reference list of what you can query against.

2. Secondly, if you hover your mouse cursor over a Table name, a new pop-up window displays

that provides even more query shortcut value. Also of importance, notice that the pop-up will

display the description of the table.

3. If you click the Use in editor option, the Table name will automatically be placed in the query

window so you can start querying against the table.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/schemalist-1.png?ssl=1

4. The Useful links option links directly to the Azure Monitor Logs table reference that I provided

as a resource in Part 1.

5. And, finally, the most excellent, super-cool shortcut is the capability to click and look at sample

results from the table itself. Clicking on this will produce its own window similar to the

following:

Data Sampling

Incidentally, this most excellent, super-cool shortcut is actually a KQL query itself that uses the take

operator that I’ll cover later in the series. In fact, it’s a take 10 like the following:

OfficeActivity
| take 10

This tells the query engine to display a random set of 10 records as a data sample. Because it’s random,

every time it runs different data will display.

OK, now that we have all the concepts and UI functionality finally out of the way, it’s time to start building

queries using the most common KQL operators. From this point on in the series, I’ll supply a KQL example

based on an operator you can expect to use and see constantly in Microsoft Sentinel and our other

security platform services. You should make it your intent to make use of the public KQL Playground I

https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-category
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/takeoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/takeoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/datasample.png?ssl=1

supplied in the Part 1 resources, or your own environment, to get hands-on with each operator I talk

about.

You’ll see as I go along, I’ll take a simple query and start to build on it with each new part in this series.

We’ll begin simply and end up with an interesting, but more complex query than what we started with.

Must Learn KQL Part 8: The Where Operator

Hands-on Recommendations

Before jumping directly into coverage of the first KQL operator, I want to extend some recommendations

on how to proceed to ensure you get the most out of the hands-on opportunities through the remainder

of this series.

In each new part of this series, I’ll talk about a specific KQL operator, command, or concept and supply

example queries that you can use to get hands-on experience. The examples will be available here in the

text, but also in the Examples folder of the GitHub repository for this series

(https://aka.ms/MustLearnKQL).

Recommendation 1: I know it will be tempting to just copy, paste, and run my query examples. But do

yourself a favor and type them out instead. Use the blog page, or the book, as a side reference, and type

out the queries character-by-character and line-by-line. I’m a big believer in learning by doing. Typing the

queries out will solidify your new knowledge.

Recommendation 2: Consider using the KQL Playground (https://aka.ms/LADemo) from the Part 1

resources as your learning environment when typing out the queries. The KQL Playground contains

several data connections that you may not have in your own environment. The examples that I provide

will have been tested to work and to show results. There’s nothing more frustrating than being given an

example and there are no results for your effort. You’ll immediately start to think you did something

wrong or that the query itself is bad. So, please, if possible, use the KQL Playground.

With that, let’s jump into the first KQL operator…

Where Operator

Bear with me (and forgive me) while I repeat myself. In Part 5: Turn Search into Workflow, I said the

following…

Filtering the data is the key to everything. <= Read that again. Filtering the data that is

returned produces exact, actionable data. It also improves the performance of our

queries. Where the search operator may return thousands of rows of data in 15 seconds

(or less), by properly filtering the data to return exactly what is necessary returns just the

number of rows of data we asked for which greatly improves the processing time. Where

the search operator may have taken 15 seconds, our new Search structure query will take

5 seconds or less. The Where operator is the key to this operation. Learn it. Know it. Keep

https://aka.ms/MustLearnKQL
https://aka.ms/LADemo

the Where operator reference page handy: https://docs.microsoft.com/en-us/azure/data-

explorer/kusto/query/whereoperator.

Rod Trent, circa Part 5 of the Must Learn KQL series

That still holds true. So, based on that, would you agree with me that that makes this Part 8 one of the

most important in the series? You betcha.

The syntax for the where operator will always be the same. Using our knowledge from Part 3 on workflow,

you know that the flow of the query needs to follow a logical path. We need to tell the query engine the

table we want to query against, then we need to tell it how to filter that data.

Where operator syntax:

TableName
| where predicate

Allowable predicates:

• String predicates: ==, has, contains, startswith, endswith, matches regex, etc

• Numeric/Date predicates: ==, !=, <, >, <=, >=

• Empty predicates: isempty(), notempty(), isnull(), notnull()

Quick Note: has and contains are powerful predicates because they provide the capability to search for bits

and pieces of string data. However, there is a slight difference. Per the Best Practices doc,

the has operator is better performing. Just something to know.

Where operator example:

In the following example, I’ve added the commenting character (the double-forwardslash covered in Part 3)

to each line to explain what it is accomplishing.

SecurityEvent // The table
| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon
| where AccountType =~ "user" // case insensitive

As shown, the example queries the SecurityEvent table, looking for normal users (non-admins) that had a

successful login in the last hour. Can you see that? For each command line (separated by the pipe character

(|) I talked about in Part 3) the where operator is enacting on the data in a specific way based on the

predicate. In the example, I’ve used the where operator three different times to further filter the results

that will be produced. I can use the where operator ad nauseam, until the results are exactly what I need

them to be.

Your results in the KQL Playground (https://aka.ms/LADemo) will look something like the following:

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/best-practices?WT.mc_id=m365-0000-rotrent
https://aka.ms/LADemo

I’m keeping it simple here and focusing only on the string and time predicates. As we move on in the

series, we’ll get to the other predicates.

EXTRA: There is one additional piece of clarification I need to make. In the third (last line) where statement

of the example query there’s an interesting looking predicate (=~). The tilde (~) character can be used in

string predicates to cause the query engine to ignore case (case insensitivity). So, for our example, I’m

telling the query engine to find every occurrence of the word “user” in the AccountType column no matter

if it’s spelled “User” or “user” or “uSEr”, etc. Otherwise, it’s going to return my request verbatim which

could result in zero results for the AccountType column.

Here, try it yourself in the KQL Playground (https://aka.ms/LADemo) without the tilde and notice that the

AccountType column is empty:

SecurityEvent // The table
| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon
| where AccountType == "user" // case sensitive

The tilde is an extremely useful tool particularly if there have been data or schema changes.

https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/whereone.png?ssl=1

EXTRA CREDIT: If you’re hungry for more of the where operator, and just want to continue building your

KQL knowledge until the next part in this series (see the TOC), take the original query example to the KQL

Playground (https://aka.ms/LADemo) and run it line-by-line to see how each line changes the results. You

can insert and remove the double-forwardslash (//) character at the beginning of each command line to

comment it out or to include it.

For example, the following query will show more data than just in the last hour because, as you can see,

the TimeGenerated filter line with the double-forwardslash character.

SecurityEvent // The table
// | where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon
| where AccountType =~ "user" // case insensitive

https://aka.ms/MustLearnKQL
https://aka.ms/LADemo

Must Learn KQL Part 9: The Limit and Take Operators

Because limit and take are so similar and used for the same purposes, I’m going to combine those in this

part of this series. I’m not going to rehash my hands-on recommendations here, but please check out the

section in Part 8 for those if you either missed it or have forgotten. In my opinion, the hands-on part of

this series is the most important piece.

Up front – there are no functional differences between limit and take. They’re like fraternal twins. They

have the same origin and similar attributes but have different names and looks.

In some cases, there are those KQL operators or commands that have similar functions, but one is better

than another in how it reacts with the underlying technologies. Or, better said, one is better performing in

most situations than another. In fact, we have a living document around this. See the KQL Best Practices

doc for more information. Take special notice of the has and contains operators in the list in the Best

Practices doc since I talked about the String Predicates in Part 8.

That said, since there are no true functional differences between limit and take it comes down to personal

preference.

Limit/Take operator syntax:

Tablename
| limit <number>

-or-

Tablename
| take <number>

There are a few things to keep in mind about these fraternal twin operators:

• Sort is not guaranteed to be preserved. This speaks for itself. Don’t expect any special

sorting of columns of data to work.

• Consistent result is not guaranteed. No matter how many times you run the same query

with limit or take, it will most assuredly produce different results. The results are always

random.

• Very useful when trying out new queries or performing data sampling. Data Sampling is a

powerful capability of any data scientist or meager KQL query maven. This is a similar activity

for when we used the search operator in Part 4.

• Default limit is 30,000. No matter what number you supply in the query, the results will never

show more than 30,000. That’s a hard limit. And, when you think about it,

since limit and take are part of a data sampling technique, you may want to seriously rethink

your strategy (and use a different operator) if you need more than 1,000 rows of data returned –

and that’s a generous number.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/limitoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/takeoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/best-practices
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/best-practices

limit/take operator example:

As recommended in Part 8, use the KQL Playground (https://aka.ms/LADemo) to test the following query

example. And for those wanting to better retain the knowledge, try typing the query out instead of

copying/pasting.

And guess what? I’ve supplied both the limit and take operator versions so you can start to formulate your

favorite.

SecurityEvent // The table
| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon
| where AccountType =~ "user" // case insensitive
| limit 10 //random data sample or 10 records

-or-

SecurityEvent // The table
| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon
| where AccountType =~ "user" // case insensitive
| take 10 //random data sample or 10 records

Also notice that I’m using the same query example from Part 8 – just adding the limit and take command

lines at the end. I’ll use this same query throughout (as much as possible) to show a standard method of

query development that will lead to creating your very first Analytics Rule for Microsoft Sentinel. Creating

an Analytics Rule for Microsoft Sentinel is a very similar process of starting simple and building bigger.

Your results for either query example will look like the following. Just remember that your results will be

slightly different because of the random nature of the operators.

https://aka.ms/LADemo

Randomness

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/randomness.png?ssl=1

Must Learn KQL Part 10: The Count Operator

If you remember in the last part of this series (Part 9 on limit and take operators) I noted that in the query

tool the query results are limited to 30,000 rows. Depending on how far back the data the is being stored,

i.e., your Log Analytics workspace retention settings, there might possibly be hundreds of thousands of

rows of data in the tables. Now, going back to what I said before (also in Part 9), if you need more than

1,000 rows of data to determine if something exists or is impactful to the environment, you might want to

change your strategy. In my opinion, just knowing that a potential security situation exists is important

enough to circle the wagons.

But a count of something is a good measure to get a better understanding of the overall impact of a

situation.

For example, if there’s one or two occurrences of a single person locking themselves out of their account

in the last 30 days, that’s not usually a big deal. It’s most likely someone who forgot their password. As

remediation, we can suggest to their manager that they might need to invest in training. We’ve all worked

with those types of people. And as many of those types we know professionally, we probably know many

more personally. My mom, my dad, my wife – yes, I’m also afflicted by those that believe passwords are

just a nuisance and not something worth remembering.

But if we have a record of that single person locking themselves out of their account 100 times in the last

30 days, that’s a more immediate concern.

This is where the count operator really shines.

Count operator syntax:

Tablename
| count

On its own, just using the operator syntax listed above will show the exact number of rows in a given

table. For example, the following query shows how many rows exist in the SecurityEvent table.

SecurityEvent
| count

Typing out this query in the KQL Playground (https://aka.ms/LADemo) will show something like the

following screenshot…

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://aka.ms/LADemo

Number of rows in the SecurityEvent table

Now, let’s take the same query we’ve been using for all of our query building exercises so far and add

the count operator to it. Type this query in the KQL Playground (https://aka.ms/LADemo):

SecurityEvent // The table
| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon
| where AccountType =~ "user" // case insensitive
| count // Number of successful logons

As before, the query results show us the number of successful logons in the last hour by all standard

(non-admin) users. But, now with the count operator, the results tell us the total number of times this

occurred.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://aka.ms/LADemo
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/SecurityEventRowCount-1.png?ssl=1

Number of successful logons

I think we can agree that this is much more impactful data than just showing row after row of data and

then having to manually sift through it. It’s important to grasp that adding a simple line to our original

query changed everything. It made it even more powerful and even more relevant for our purposes.

Hopefully, you see as we are building our query toward Analytics Rule creation (see the TOC), that only

simple steps are required to get us there. Each part of this series is intended as just one more simple step

in the learning process.

The count operator will be a key to Analytic Rule development. In the next part of this series (see the TOC),

I’ll talk about the summarize operator where the count operator will come into play again. In fact, we’ll be

working with count quite a bit throughout the series. As important as the where operator is for filtering

data (Part 8), the count operator is equally significant for its myriad of uses including helping create graphs

and charts when we get to the render operator (see the TOC).

EXTRA CREDIT: The number of successful logons (Event ID 4624) is not necessarily something we look for

when searching for security events. Instead, Event ID 4625 (unsuccessful logon) is the one most used to

expose issues. For extra work and fun, in the KQL Playground (https://aka.ms/LADemo) simply change

4624 in the query to 4625 and run it again.

https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://cda.ms/3p4
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/summarizeoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://cda.ms/3sH
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://aka.ms/MustLearnKQL
https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/SuccessfulLoginCounts.png?ssl=1

SecurityEvent // The table
| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4625 // Unsuccessful logon
| where AccountType =~ "user" // case insensitive
| count // Number of successful logons

In the KQL Playground (https://aka.ms/LADemo) you should get 0 (zero) results for your effort, but this is

also an impactful number. If there are no unsuccessful logons in your environment – ever – you have been

gifted with the unicorn of end-user populations and you should never leave your post.

Yay! No unsuccessful logons!

https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/UnsuccessfulLogonCounts.png?ssl=1

Must Learn KQL Part 11: The Summarize Operator

For this part in this Must Learn KQL series, I once again want to take the logical next step as we march

toward generating our very first Microsoft Sentinel Analytics Rule (see the TOC for the cadence). We have

a lot of ground to cover before then, but the next few operators we talk about are useful for various

reasons – one of those reasons, like this section’s Summarize operator talk, is to produce number data to

encapsulate actions. By creating thresholds, we can generate additional logic for how we want to react to

situations. For example, if there’s one person that failed login in the last 10 days, it’s a non-issue. But, if

that account failed login 100 times in the last 5 minutes – well – we have a problem. Summarizing the data

makes it more meaningful.

The Summarize operator does just what it suggests – it summarizes data. In deeper terms, it produces a

table (in the results) that aggregates the content of the input table. As an example of this, use the following

KQL query in the KQL Playground (https://aka.ms/LADemo) to see the results. And, as before, try typing

the query into the KQL Playground instead of just a copy/paste operation. If you see an error, you

might’ve fat-thumbed something so you can use the inline code to compare against. Query

troubleshooting is a great skillset to have.

SecurityEvent // The input table
| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon
| summarize count() by AccountType, Computer //Show the number of successful logons per computer and
what type of account is being used

Your results should be like the following:

https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/summarizeoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/summarizeoperator
https://aka.ms/LADemo

Summarize Operator Syntax

Tablename
| summarize Aggregation [by Group Expression]

• Simple aggregation functions: count(), sum(), avg(), min(), max(),

• Advanced aggregation functions: arg_min(), arg_max(), percentiles(), makelist(), countif()

The Simple aggregations should speak for themselves. While the Advanced ones may require a bit more

information. I’ll leave these descriptions here for posterity, but we’ll actually circle back later in this series

to cover them in depth. Again, our series is a building operation. I don’t want to give you too much too

soon and want to do so in a logical fashion so it all makes sense and learning is easier to retain.

Advanced aggregations:

• arg_min(), arg_max(): returns the extreme value

• percentiles(): returns the value at the percentile

• make_list(), make_set(): returns a list of all values/distinct values respectively

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/summaryresults.png?ssl=1

Now that we’re deep into this series with Part 11, I’m going to attempt to do a bit less handholding. If this

is your first introduction to this series, I highly suggest going back and making it through from the start

because each new section or chapter builds on the previous ones. You can find the entire series tabulated

in the TOC.

With that, I want to leave you with some additional Summarize exercises that you can work with in the

KQL Playground (https://aka.ms/LADemo). These use the Advanced aggregates and I’ll refer to these later.

SecurityEvent
| where EventID == 4624
| summarize arg_max(TimeGenerated, *) by Account
AzureDiagnostics
| summarize arg_max(TimeGenerated, *) by ResourceId
SecurityEvent
| summarize AdminSuccessfullLogons = countif(Account contains "Admin" and EventID == 4624),
AdminFailedLogons = countif(Account contains "Admin" and EventID == 4625)

As you can tell, this is not quite the end of our Summarize operator discussion. There will be plenty more.

In fact, other than later in the series, I’ll talk about Summarize even more in the very next part when I

cover the Render operator in Part 12.

https://aka.ms/MustLearnKQL
https://aka.ms/LADemo

Must Learn KQL Part 12: The Render Operator

This chapter may seem like somewhat of a detour on our path to using KQL queries to create Analytics

Rules for Microsoft Sentinel, but there’s some very real value in turning rows and columns of data into

visualizations. Sure enough, across Microsoft Sentinel, you’ll use KQL for almost everything – that includes

the Workbooks feature that allows organizations to develop their own views of the security data.

Workbooks can be used to create dashboards of consolidated data. I’ve worked with several customers in

911-emergency-type settings where they erect massive screens at the front of the room. KQL allows them

to create the dashboard views that display on the screens so the entire security team can be privy to

potentially nefarious operations in near real time. So, understanding how KQL can produce visualizations

is important.

There’s another great reason to put some effort into learning how to transform static data into graphs

and charts – and it’s not just because I said in Part 6 when I gave the tour of the User Interface…

I preface this post by saying this: everything discussed in this

post about the User Interface (UI) can be done (and should be

done, eventually) in the KQL query itself.
Rod Trent, Part 6 of the Must Learn KQL series

I like to think of myself as a reader. I remember growing up reading book after book and loving it. One of

my favorite series was the Hardy Boys. I read the entire series and some of the books more than once. I

seriously believe that mystery books like those have a lot to do with my fascination with cybersecurity.

But, somewhere along the way I was introduced to comic books and telling stories with pictures and

words was fantastic to me. I’m a visual, hands-on type of learner so comic books really filled a void.

Fast forward to today. Every day I read tomes of emails, Teams messages, social media posts, etc., etc.

And frankly this has soured me to just general reading. Friends and family are always recommending

books and I just look at them and shake my head. Once they see my response to their recommendations,

they quickly switch to “well, just get the audiobook version, you’ll love it” as if that’s somehow a better

alternative. I truly wish I could go back and be that early reader and get excited about it all. But I read so

much as part of my job, sitting down with a book in a quiet room now seems like torture to me. But, as a

visual learner, that comic book style still appeals to me. If you can show me in a meaningful way the

storyline of a threat, I’m all in.

P.S. I still read comics books to this day.

And that, for me, is where the KQL Render operator comes in. Render tells the query engine that you want

to take the data you’ve supplied, and show it in any of the following ways (visualizations):

• areachart – Area graph. The first column is the x-axis and should be a numeric column.

Other numeric columns are y-axes.

https://amzn.to/3z7a56d
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/renderoperator?pivots=azuredataexplorer

• barchart – First column is the x-axis and can be text, datetime or numeric. Other columns

are numeric, displayed as horizontal strips.

• columnchart – same as barchart.

• piechart – First column is color-axis, second column is numeric.

• scatterchart – Points graph. The first column is the x-axis and should be a numeric column.

Other numeric columns are y-axes.

• table – this is the default view.

• timechart – Line graph. The first column is x-axis, and should be datetime. Other (numeric)

columns are y-axes.

Something important to know is that each visualization requires a certain data type before it will display.

I’ve boldened those requirements in the list above. As you see, many of the requirements are numeric,

hence why I covered the Summarize operator in the previous part/chapter 11 (see the TOC). What I didn’t

cover in Summarize was how to take numeric and datetime values and group them into smaller specific

values for use in visual displays using the Render operator. In the examples below, I’m including bin and

time for your hands-on exercises in the KQL Playground (https://aka.ms/LADemo) but understand that Bin

rounds values down to an integer multiple of a given bin size. It’s used frequently in combination

with summarize by. If you have a scattered set of values, they will be grouped into a smaller set of specific

values. For the first examples below, recognize that bin is being used to split out a week’s worth of data

into daily chunks.

Render Operator Syntax

Tablename
| render visualization

Just the Data

SecurityEvent //The table
| where TimeGenerated > ago(7d) //Looking at data in the last 7 days
| summarize count() by bin(TimeGenerated, 1d) //Using Bin to group the data by each day

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/summarizeoperator
https://aka.ms/MustLearnKQL
https://aka.ms/LADemo

Just the data

The Data as a Barchart

SecurityEvent //The table
| where TimeGenerated > ago(7d) //Looking at data in the last 7 days
| summarize count() by bin(TimeGenerated, 1d) //Using Bin to group the data by each day
| render barchart //Looking at the data in a Barchart

Data in Barchart view

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/barchart.png?ssl=1

Here’s a couple additional examples for you to work with. The first one shows IP addresses with the most

activity and the second displays disk space available for virtual machines.

And lastly…if you want something with a really spectacular view, I give you a burst of exciting color.

IP Address Activity

VMConnection //Tablename
| summarize count() by SourceIp //Summarizing found IP addresses
| sort by count_ desc //Sorting the list in descending order
| render barchart //Showing the data in a barchart to show activity

Drive Space

Perf //Tablename
| where CounterName == "Free Megabytes" //Looking for free megabytes
| where InstanceName matches regex "^[A-Z]:$" //Looking for regular expressions for drive letters
| summarize min(CounterValue) by bin(TimeGenerated, 1d) //Grouping the data by each drive letter found
| render columnchart

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/ipaddresses.png?ssl=1

Ooooo…pretty!

Usage //Tablename
| summarize count_per_type=count() by DataType //Creating the numeric value (summary) for types of data
| sort by count_per_type desc //Sorted by descending order
| render piechart //Display the data in a piechart

In the next two parts/chapters, we’ll get back on track as I start discussing how to manipulate the results

that are display using the Extend and Project operators.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/drivespace.png?ssl=1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/cool.png?ssl=1

Must Learn KQL Part 13: The Extend Operator

I think it’s necessary at this point to do a slight self-recap because in the next few parts/chapters for this

Must Learn KQL series (parts 13-16), I’ll talk about how to manipulate the KQL query results so that they

can be customized to show exactly what is important to your operations.

Jumping all the way back to Must Learn KQL Part 3: Workflow, realize where we are in the workflow. We’re

actually very near the end of our original goal. We have discussed finding and organizing data, now it’s

time to learn how to provide custom views of the data.

Custom data views are important in that each environment is different and each environment’s

requirements for security will differ – sometimes greatly. Whether it’s geographical, business political, or

something else, the data that is exposed will alter the perception of the organization’s risk. So, it’s

important to expose the right data.

One valuable operator provided with KQL to customize the data views is the Extend operator. The Extend

operator allows us to build custom columns in real-time in the query results. It allows you to create

calculated columns and append them to the results. Understand, though, that we’re not creating columns

of data that are stored back into the data table, but only generating a column of custom data based on

our current request.

Here’s a good example…

The following query looks through the Computer data column in the SecurityEvent table, calculates the

character length of the name of each computer found, and produces custom column called

‘ComputerNameLength’ in the results. Feel free to use this query our the KQL Playground demo

environment (https://aka.ms/LADemo).

SecurityEvent //the table
| extend ComputerNameLength = strlen(Computer) //creates a new column called ComputerNameLength of
the calculation of the number of characters of the computer name in the Computer column

Here’s what this will look like…

https://azurecloudai.blog/2021/11/19/must-learn-kql-part-3-workflow/?WT.mc_id=m365-0000-rotrent
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://aka.ms/LADemo

Custom column

Again, this column of data is generated in real-time. Once the results have been cleared, this data no

longer exists.

Extend operator syntax

TableName
| extend [ColumnName | (ColumnName[, ...]) =] Expression [, ...]

In simpler terms, just as before with our standard query workflow we (1) give the query engine the table

we want to use, then (2) use the extend operator to assign a custom name to a new column, and then (3)

insert data into it.

So, using the previous example, I:

1. Designated the SecurityEvent table

2. Assigned the name ComputerNameLength to the new column

3. Inserted the data I wanted to see. In this case, the hostname length for each computer found in

the data.

The data that is inserted into the custom column(s) can be text, number values, calculations, etc., etc., etc.

I can use and combine existing table data, or I can fabricate data to be included in the custom column.

In the following example, I’m literally just making stuff up in that the first column called My_Calculation, is

just the result of 8 x 8 (64), and My_Fabricated_Data is just something I wanted to say.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/computerlength.png?ssl=1

SecurityEvent
| extend My_Calculation = 8*8
| extend My_Fabricated_Data = "Yay for me!"

The results look like the following…

Just random stuff

But the true beauty of this function is to take existing data, combine it, and display it in meaningful ways.

Take the following as an example of using existing data to make to display it in better ways. Use the

following query in the KQL Playground (https://aka.ms/LADemo).

Perf //table name
| where CounterName == "Free Megabytes" //filtering data by 'free megabytes'
| extend FreeKB = CounterValue * 1024 //calculating free kilobytes
| extend FreeGB = CounterValue / 1024 //calculating free gigabytes
| extend FreeMB = CounterValue //calculating free megabytes

https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/mystuffhere.png?ssl=1

This example looks at the Perf table to find free disk space on the recorded systems and display it in

kilobytes, megabytes, and gigabytes. Your results will look something like the following:

Free disk space

The Extend operator is a valuable tool to enable customizing the data that is displayed. As noted, we’ll be

working with several KQL operators to help develop our own custom views in the next few parts/chapters.

But the Extend operator is a key creation key tool that you’ll find used throughout tools like Microsoft

Sentinel to provide things like data parsing and creating custom entities. If you’re working with data from

custom log files, for example, that data is probably not normalized, and you’ll need to expose things like

usernames and hostnames that can’t be exposed on their own. This is where the Extend operator

provides huge value. And, as we continue our march to building your first Microsoft Sentinel Analytics

Rule, the Extend operator is yet another logical step in that process. Extend is used quite a bit in Analytics

Rules, so understanding its power and capability is important.

For those that want just a little bit more before we come together again for the next part/chapter, here’s a

task for you.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/freedisk.png?ssl=1

I was tasked recently to locate billable data by computers – or which computers were costing the company

the most. The following is what I came up with.

find where TimeGenerated > ago(1d) project _BilledSize, _IsBillable, Computer, _ResourceId
| where _isBillable=true and isnotempty(Computer)
| summarize billedData = sumif(_BilledSize, _IsBillable=~true),
 freeData = sumif(_BilledSize, _IsBillable=~false) by Computer
| extend Total_Data = billedData + freeData
| order by billedData desc

Now, don’t freak out. This is not that difficult to understand. Remember, our goal with this series is to be

able to look at a query and understand what the results will be – whether we created the query or not.

Take some time and break this down.

Must Learn KQL Part 14: The Project Operator

As noted in part/chapter 13 of this series, the next few parts/chapters (parts 13-16) will be all about how

to manipulate the results of the KQL queries. As shown in part/chapter 13, the Extend operator allows us to

create (and even fabricate) special data to show in the results. On its own, that’s hugely valuable. But, also

noted throughout this series, the results of the query are the most important part of the process because

the types, formats, and ways the data is displayed will allow us to focus on the actual security prospects.

And when it comes to identifying threats quickly, efficiency is key.

While part/chapter 13 provided a way to build custom views of the data, that data was still populated

among all the rest of the data. Now we get to do something with the data. We get to choose exactly what

is displayed to afford our security teams the chance to catch things quickly. We can choose to display our

custom data, but then handpick everything else.

This is where the Project operator comes into play. Using the Project operator, I can tell the query engine

the exact data columns to show. In this case, by the way, Project is pronounced like as in projector.

The Project operator takes on the following syntax:

Tablename
| project column1, column2, column3

Let’s take the query we used in part/chapter 13 and add one single line to end. Use the KQL Playground

(https://aka.ms/LADemo) for your hands-on experience with the following query.

Perf //table name
| where CounterName == "Free Megabytes" //filtering data by 'free megabytes'
| extend FreeKB = CounterValue * 1024 //calculating free kilobytes
| extend FreeGB = CounterValue / 1024 //calculating free gigabytes
| extend FreeMB = CounterValue //calculating free megabytes
| project Computer, CounterName, FreeGB, FreeMB, FreeKB //only show these columns

In this query example, that one single line addition simply tells the query engine to only display the

existing Computer and CounterName columns along with my custom created columns (FreeGB, FreeMB,

FreeKB). See that?

Look at the differences in the following comparison images. The top one comes from part/chapter 13 and

shows literally every column in the Perf table with my custom created data weaved in. The bottom one is

much more concise, precise, and oh so nice.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://aka.ms/LADemo

The Project operator may seem like a simple tool, but its hugely powerful, giving you data choice.

But there’s more to it. As the TV detective, Columbo, used to say: Just one more thing…

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://youtu.be/QxBnaMGP2aY
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/differences.png?ssl=1

The Project operator has more depth than you might realize.

First off, like the Extend operator, you can use Project to create custom columns. For example, the

following query eliminates the Extend operator completely and just creates the same custom columns as

before.

Perf //table name
| where CounterName == "Free Megabytes" //filtering data by 'free megabytes'
| project Computer, CounterName, FreeGB=CounterValue / 1024, FreeMB = CounterValue, FreeKB =
CounterValue * 1024 //only show these columns

You might think based on this that, hey, I’ll never need to use the Extend operator again. But, no, that’s not

the case and I’ll dig deeper into this as we get closer in the series to building an actual Analytics Rule (see

the TOC).

And, then there are also some other Project options that are so hugely valuable that they have their own

operator reference page and are considered their own operators. However, in respect to our discussion in

this series you should absolutely keep each of these in your toolbelt and have knowledge about them.

Here’s why:

Project-away – Select what columns from the input to exclude from the output. Project-away is probably one

of my favorite Project operator variants because it’s an efficiency tool. Most tables have 25 or more data

columns stored inside. What if you want to display all columns except for 4 or 5? Would you use

the Project operator and just manually type out 20 columns to show? I hope not – once you understand

how Project-away works. Using Project-away you can effectively tell the query engine to

display ALL columns EXCEPT the one’s you list in the Project-away statement. Notice also that wildcards are

supported:

Tablename
| project-away column1, column2, column3*

Project-keep – Select what columns from the input to keep in the output. This Project variant is essentially the

default operation. Hint: Just use the standard Project option.

Project-rename – Renames columns in the result output. This option gives you the ability to rename column

headers during query-time. Don’t like a column name? Or, maybe your team has standardized on

Computer as a specific value for the Hostname column. This is how you can change the column name in

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://aka.ms/MustLearnKQL
https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectawayoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/project-keep-operator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectrenameoperator

the results. Note that this does not change the data column name in the table – just in the query-time

results.

Tablename
| project-rename my_new_column_name = old_column_name

Project-reorder – Reorders columns in the result output. Most generally, the order of columns in the results

will be determined based on their original order in the table. But, alas, sometimes even that doesn’t hold

true. If you want to make sure to display the columns in a specific order without turning their fate over to

chance, use project-reorder.

Tablename
| project-reorder column2, column3, column1

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectreorderoperator

Must Learn KQL Part 15: The Distinct Operator

The next couple parts/chapters in the Must Learn KQL series are shorter ones as we complete the series-

within-the-series (parts 13-16) on manipulating the query results So, in this mini-series far we’ve talked

about how to create custom columns with the Extend operator and shown how to display (or not display)

specific data in the results using the Project operator. But what if you need to get even more granular with

the data that is presented? This is where the Distinct operator comes in.

As you can imagine by the operator’s name, the Distinct operator delivers results based on

a distinct combination of the columns you provide.

For example, if I have 100’s of computers stored in the table, each with their own combination of activity

and data, but I only want to know each computer name, I will supply a KQL query similar to the following:

SecurityEvent //the table
| distinct Computer //show distinct computer names

Feel free to use the KQL Playground (https://aka.ms/LADemo) we’ve used throughout this series to try this query

out yourself.

Look at the results differences between using just the Project operator against the Distinct operator.

Notice the differences in simplicity of what is displayed along with the volume of what is displayed.

Project versus Distinct

Distinct can also be used for more than one data column as is shown above and is generally intended (as I

mentioned above) to produce a combination of the columns you provide. The beauty of the Distinct

operator is that it allows you to get extremely precise in what is returned, which is hugely important when

using KQL to perform security Hunting operations – which I’ll cover after we’ve achieved our goal in this series

of creating our first Analytics Rule for Microsoft Sentinel (watch the TOC for details).

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://aka.ms/LADemo
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/ProjectvsDistinct.png?ssl=1

Before handing you off to a series of hands-on opportunity examples, let’s take some of our accumulated

knowledge and apply it to this same scenario. What if we wanted to not only show the distinct computer

names (as in the example above), but also needed to show how much activity each computer has been

responsible for over the last 24 hours?

Don’t cheat! Think about it for a second. What operators would you combine with Distinct? How would you

get a summarized count of distinct computers? <== there’s a hint in there

Remember, story problems and developing storylines are the basis for all security. That doesn’t just mean

things like who did it and why, but also includes how to expose the data to show the story. That’s

important.

OK…here’s who I would supply the result from the ask:

SecurityEvent //the table
| summarize count() by Computer //getting the count of computers
| distinct Computer, count_ //showing the distinct computer names, combined with the count of how many
times each computer has been reported with some sort of activity

In the example, notice that I’ve used summarize to get a count of all Computers first, then combined the

Computer data column with the count in the last line using Distinct.

Your results using the KQL Playground (https://aka.ms/LADemo) will be something like the following…

Count of Computer Activity

https://azurecloudai.blog/2022/01/05/must-learn-kql-part-11-the-summarize-operator/?WT.mc_id=m365-0000-rotrent
https://azurecloudai.blog/2021/12/14/must-learn-kql-part-10-the-count-operator/?WT.mc_id=m365-0000-rotrent
https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/countcomputers.png?ssl=1

All YOU, baby!

The following series of KQL queries gives you a chance to get some hands-on experience with more of the

Distinct operator and a chance to shine your growing expertise. While the following examples are not

specifically security related, I believe you will find them interesting because KQL transcends one product,

one workload, or one area of focus. It’s good to reiterate this. KQL is important to anyone working in

Azure and will only become more critical as time progresses. You need to elbow nudge your colleagues

over this. Your KQL learning in this Must Learn KQL series could lead to a whole new career path.

Take the following examples and run them in the KQL Playground (https://aka.ms/LADemo) and then

prepare for the last part/chapter of this series-within-a-series on manipulating results.

P.S. If you’re just being introduced to this series, I entreat you to start at the beginning before digging into the

examples – unless of course, you’re already a KQL master.

Perf //the table
| distinct Computer //find all the computers that are reporting performance data to Log Analytics

Perf //the table
| distinct ObjectName //Using the same performance example, finding all the object types that we have
performance data for

Perf //the table
| distinct ObjectName, CounterName //We want to see all the metrics for each object, in this case CounterName

UpdateSummary //the table
| distinct Computer, WindowsUpdateSetting //We can get our Windows Update Settings for all servers we’re
managing with the Update Management solution

UpdateSummary //the table
| distinct Computer, WindowsUpdateSetting, OsVersion, OldestMissingSecurityUpdateInDays //However,
we’re not limited to just one or two fields. We can add more, in this example we’ll get our servers, their update
setting, OS version and the oldest update they need in days

Update //the table
| where UpdateState == "Needed" //retrieve only those systems where updates are needed
| distinct Computer, KBID, Title //Finally, we can quickly build a report of systems needing updates, the KB
number and title of the update

https://aka.ms/LADemo
https://aka.ms/MustLearnKQL

Must Learn KQL Part 16: The Order/Sort and Top Operators

In this last part/chapter of the series-within-the-series for data view manipulation, I’m going to combine a

couple operator types. Looking at the title of this part/chapter, it may seem that I’m focused on three

operators (order, sort, and top), but really – like the Limit/Take operators from Part 9 – Order and Sort

provide functionally no difference. This is one of those situations, again, where it becomes personal

preference which one to use. In fact, when you read through the KQL reference doc it will tell you that…

The order operator is an alias to the sort operator.

…and then tell you to go check out the Sort operator page.

So, let’s focus on that first.

The Order By/Sort By operator type enables you to sort data columns in the query results so you can view

the data first in a way that’s more meaningful. For example, the following query (which you can use in the

KQL Playground https://aka.ms/LADemo), queries the SecurityEvent table for the last 7 days of data and

shows a random 100 records in descending order by the time each returned record was generated.

SecurityEvent //the table
| where TimeGenerated > ago(7d) //look at data in the last 7 days
| order by TimeGenerated desc //sort or order the TimeGenerated data column in descending order
| limit 100 //show 100 random records

There are a couple important things to call out about the Order By/Sort By operations:

1. You can Sort by multiple columns and each column by different directions. For example,

replace the Order By line above with the following: | order by TimeGenerated desc, Computer asc

2. The default view returned for data is descending order (desc).

3. If you are sorting by a data column that has null values (empty records), those will be displayed

first using the default order (desc).

You have the option with Order/Sort to directly – as part of the sorting – to adjust where the nulls show up

by adding either a nulls first or nulls last option as shown in the next example.

SecurityEvent //the table
| where TimeGenerated > ago(7d) //look at data in the last 7 days
| order by TimeGenerated desc nulls first //sort or order the TimeGenerated data column in descending order,
showing nulls first
| limit 100 //show 100 random records

TIP: If the null records thing bothers you like it does me (must be an OCD thing), you may want to modify

your query so that null records aren’t returned at all. Here’s a simple modification to the above query to

stop showing data if the Account data column is empty.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/sortoperator
https://aka.ms/LADemo

SecurityEvent //the table
| where TimeGenerated > ago(7d) and isnotnull(Account) //look at data in the last 7 days where the Account
column isn't empty
| order by TimeGenerated desc //sort or order the TimeGenerated data column in descending order
| limit 100 //show 100 random records

Just be careful with this. Sometimes, null columns can be an important delimiter.

Lastly, to continue to improve and hone your query knowledge – particularly for efficiency – the Top

operator can be used to simplify our example. Ascending and Descending order work the same for Top as

it does for Order/Sort, but we can combine expressions using Top, as is the case in the following example.

Plus, the Top operator is a great way to retrieve the most recent records instead of always relying on

random samples.

SecurityEvent //the table
| top 100 by TimeGenerated desc //Retrieving the top 100 records sorted in descending order by
TimeGenerated

See what I did there? The Top operator is performing, essentially, the same operation as before, but it has

simplified the query that it is required. In this case, though, I’m returning top values instead of the random

ones that the Limit operator supplies. Top also provides the same options as Order/Sort for null values, so

you can choose where to place the empty data columns in the display.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/topoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/topoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/topoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/topoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/limitoperator

Must Learn KQL Part 17: The Let Statement

Going way back to part 3 when I talked about the standard workflow, you might remember me saying…

Even though the structure can deviate, understanding a common workflow of a KQL

query can have powerful results and help you develop the logic needed to build your own

workflows when it’s time to create your own queries.

Rod Trent, November 19, 2021

In this part/chapter of the Must learn KQL series, I’m going to focus on one of those deviations. As you’ll

see, the Let statement can deviate from the norm because it’s generally assumed that it is positioned

before the query event begins because of what it does.

So, what does the Let statement do?

The easiest way to put it is that it simply allows you to create variables. This makes sense to a lot of folks

who script or program and it’s not dissimilar.

These variables are stored in memory during query execution and can be used throughout the rest of the

query. It’s considered a best practice and is used for developing better performing queries and query code

re-use.

Most generally the Let statement will show up at the beginning of the main query, as shown in the

following slight modification of the original workflow we talked about in Part 3.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://azurecloudai.blog/2021/11/19/must-learn-kql-part-3-workflow/?WT.mc_id=m365-0000-rotrent

Normal location of the Let statement

Another important thing to note is that the statement must be finalized. It is a statement, after all. The Let

statement ends with the semicolon (;) character. This tells the query engine that the variable has been

created and needs to be stored before carrying on with the rest of the query.

The best way to understand this is to just dig into some examples. Please use the KQL Playground

(https://aka.ms/LADemo) to get hands-on for the following types of Let statements.

Creating Variables from Scratch

The first method of using the Let statement is simply to generate your own data. In the following example,

I’ve created a timeOffset variable that provides a time value of 7 days, I’ve created another variable

called discardEventID that sets our Event ID to 4688 which records when a new process on a computer has

been spawned.

The timeOffset is used to create a time range of between 7 and 14 days in which to look at data.

The discardEventID is used to show everything BUT 4688 in the results.

let timeOffset = 7d; //Setting the offset variable
let discardEventId = 4688; //assigning new process as the event ID
SecurityEvent //the table
| where TimeGenerated > ago(timeOffset*2) and TimeGenerated < ago(timeOffset) //Setting a specific time
range of between 7 and 14 days
| where EventID != discardEventId //showing all events but 4688

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/letstatementworkflow-1.png?ssl=1

Creating Variables from Existing Data

Another type of Let statement is one that pulls data from existing tables. Essentially, you turn the results

of a query into a variable. The following example assigns one query to the login variable. The second

query assigns results to the logout variable. And, then to wrap up the full results, the query then merges

(joins – which I’ll cover just a bit later in this series) both variables (login and logout) to show login and

logout times for all accounts.

let login = SecurityEvent //Setting the login variable based on a full query
| where TimeGenerated > ago(1h) //look at records in the last hour
| where EventID == '4624' //setting the event ID to successful login
| project Account, TargetLogonId, loginTime = TimeGenerated; //creating the full output, notice the semicolon
to end the let statement
let logout = SecurityEvent //Setting the logout variable based on a full query
| where TimeGenerated > ago(1h) //look at records in the last hour
| where EventID == '4634' //setting the event ID to successful logoff
| project Account, TargetLogonId, logoutTime = TimeGenerated; //creating the full output, notice the
semicolon to end the let statement
login //Accessing the login output
| join kind=leftouter logout on TargetLogonId //joining login output with logout output
| project Account, loginTime, logoutTime //Showing login and logout times for each account

Creating Variables from Microsoft Sentinel Watchlists

And, finally, Microsoft Sentinel customers should know that using the Let statement enables them to use

the Watchlist feature with their Analytics Rules.

Now, I apologize for this, but the following examples cannot be used with the KQL Playground

(https://aka.ms/LADemo) because the KQL Playground is not enabled for Microsoft Sentinel. As a

Microsoft Sentinel customer, you can use these in your own Sentinel environment. However, notice that I

have a Watchlist called FeodoTracker – you probably don’t. Also, my FeodoTracker Watchlist has a data

column called DstIP (destination IP address) – you probably don’t.

However, I wanted to include these examples for those working with Watchlists. These examples

represent Watchlist basics. The Let statement is used to build a variable for data that exists in the

Watchlist. In the first example, I’m looking for IPs that exist (in) in the Watchlist. In the second one, I’m

looking for IPs that don’t (!in) exist in the Watchlist.

And, while not part of our Let statement topic, the last two examples show how to call Watchlist data in

the midst of the query instead of assigning variable. Best practice is to use the Let statement, but I’ve

supplied these examples to show that it’s possible.

//Watchlist as a variable, where the requested data is in the list
let watchlist = (_GetWatchlist('FeodoTracker') | project DstIP);
Heartbeat
| where ComputerIP in (watchlist)

//Watchlist as a variable, where the requested data is not in the list

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://aka.ms/LADemo
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement

let watchlist = (_GetWatchlist('FeodoTracker') | project DstIP);
Heartbeat
| where ComputerIP !in (watchlist)

//Watchlist inline with the query, where the requested data is in the list
Heartbeat
| where ComputerIP in (
 (_GetWatchlist('FeodoTracker')
 | project DstIP)
)

//Watchlist inline with the query, where the requested data is not in the list
Heartbeat
| where ComputerIP !in (
 (_GetWatchlist('FeodoTracker')
 | project DstIP)
)

Not familiar with Microsoft Sentinel Watchlists or what to do with your Let statement for Watchlists after

you create it? See: Use watchlists in Microsoft Sentinel

https://docs.microsoft.com/en-us/azure/sentinel/watchlists

Must Learn KQL Part 18: The Union Operator

As I did with parts/chapters 13-16 of this series for the series-within-the-series for data view manipulation,

this part/chapter and the next form another mini-series of sorts. The Union and Join operators are

important parts of the KQL journey as they represent opportunities to combine data from tables in

different ways.

Before jumping directly off into talking about the Union operator, I think it’s best to start with describing

the differences between Union and Join. Knowing the differences will allow you to determine which one to

use for which scenario.

Union allows you to take the data from two or more tables and display the results (all rows from all tables)

together. Join, on the other hand, is intended to produce more specific results by joining rows of just two

tables through matching the values of columns you specify. You’ll see the differences once we get through

this mini-series, and you can get hands-on with the examples. I highly suggest taking the examples from

this part/chapter and running them against the examples of Part 19 on the Join operator to get a proper

comparison.

There’s a lot to the Union operator, so I suggest reviewing the reference page for all additional options,

including things like kind=inner(common columns), outer (all columns- default), and isfuzzy. I’ll discuss Union

more in the Advanced series, Addicted to KQL, but for our purposes for the Must Learn KQL journey

what’s important to know are the following:

• Union supports wildcard to union multiple tables (union Security*)

• Union can be used to merge tables from different Log Analytics Workspaces (or clusters)

For most of your operations in the Microsoft security tools like Microsoft Sentinel for creating Analytics

Rules (covered in Part 20, the last part/chapter of the Must Learn KQL series), you’ll make use of the Join

operator because of its ability to hone directly into specific results. Union, though, is an important tool for

hunting in Microsoft Sentinel and Advanced Hunting in Defender.

To get started with the Union operator, use the following examples in the KQL Playground

(https://aka.ms/LADemo).

The following query merges the SecurityEvent and Heartbeat tables and then displays each hostname

(computer) stored in both tables and how many times each computer is recorded for some sort of activity.

SecurityEvent //the table
| union Heartbeat //merging SecurityEvent table with the Heartbeat table
| summarize count() by Computer //showing all computers from both tables and how many times

This next query example is the same as before but merges with an additional table (SecurityAlert) to show

the data from three tables instead of two.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/unionoperator?pivots=azuredataexplorer
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/joinoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/unionoperator?pivots=azuredataexplorer
https://aka.ms/Addicted2KQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/joinoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/joinoperator
https://aka.ms/LADemo

SecurityEvent //the table
| union Heartbeat, SecurityAlert //merging SecurityEvent table with the Heartbeat table and SecurityAlert
| summarize count() by Computer //showing all computers from all tables and how many times they are
referenced

The following example introduces a couple changes to the first two queries in that it merges all tables that

start with ‘Sec’ (notice the wildcard character) and sorts the computers in alphabetical ascending order (the

last line).

SecurityEvent //the table
| union Sec* //merging together all tables beginning with 'Sec'
| summarize count() by Computer //showing all computers from all tables and how many times they are
referenced
| sort by Computer asc //displaying Computer names in ascending order

Must Learn KQL Part 19: The Join Operator

As noted in part/chapter 18, this mini-series on merging data contains two different principles. Reiterated

from the last part/chapter…

Union allows you to take the data from two or more tables and display the results (all

rows from all tables) together. Join, on the other hand, is intended to produce more

specific results by joining rows of just two tables through matching the values of columns

you specify.

There’s quite a bit more to the Join operator (and Join, in general) than I’ll cover in this part/chapter. I want

to make sure to keep this focused on those things necessary to help build your first Microsoft Sentinel

Analytics Rule in the final part/chapter of this series.

Join, merges the rows of two tables (left table and right table) to form a new pseudo-table by matching

values of the specified column(s) from each table. Just like any other query language’s Join, the KQL Join

operator supports the following Join methods along with some additional nuanced options – with

innerunique Join being the default.

Joining tables and data

The syntax for the Join operator is as follows:

LeftTable
|join [JoinParameters] (RightTable) onAttributes

Use the following example in the KQL Playground (https://aka.ms/LADemo). This example joins together

the SecurityEvent and Heartbeat tables on the common Computer column. It then filters all Computers by

the 4688 Event ID (newly spawned process) and shows the Computer name and the installed OS and

versioning.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/joinoperator?pivots=azuredataexplorer
https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/joins.png?ssl=1

SecurityEvent //table name
| join Heartbeat on Computer //joining SecurityEvent with Heartbeat on the common Computer column
| where EventID == "4688" //Looking for Event ID for new process
| project Computer, OSType, OSMajorVersion, Version //Displaying data from both tables

Your results should look like the following:

Results of Joining by the Computer Column

Here’s something fun. To change the kind (or, flavor) of Join, you simply add a kind option like so.

| join kind=inner Heartbeat on Computer

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/joinsimilar.png?ssl=1

Changing the flavor of join will alter how and what data is displayed. Changing our original Join query

example with the inner flavor or join will produce results like the following (note the results display

difference from before) ….

Try the following on your own in the KQL Playground (https://aka.ms/LADemo):

• | join kind=innerunique Heartbeat on Computer

• | join kind=leftouter Heartbeat on Computer

• | join kind=rightouter Heartbeat on Computer

• | join kind=fullouter Heartbeat on Computer

In the advanced series, Addicted to KQL, I’ll dig deeper into the other use cases for Join. If you’re champing

at the bit to learn more now and happen to be a Star Wars nut, check out Jing’s KQL Tutorial on the Join

operator on YouTube: KQL Tutorial Series | Joining Tables (Demo) | EP5

https://aka.ms/LADemo
https://aka.ms/Addicted2KQL
https://youtu.be/66UDqdILgpc

Must Learn KQL Part 20: Building Your First Microsoft Sentinel

Analytics Rule

The intent of this series has been to enable you to understand the structure, flow, capability, and

simplicity of the KQL query language. Way back in part/chapter 3, I said…

I tell customers all the time that it’s not necessary to be a pro at creating KQL queries. It’s

OK not to be a pro on day 1 and still be able to use tools like Microsoft Sentinel to monitor

security for the environment. As long as you understand the workflow of the query and

can comprehend it line-by-line, you’ll be fine. Because ultimately, the query is

unimportant. Seriously. What’s important for our efforts as security folks is the results of

the query. The results contain the critical information we need to understand if a threat

exists and then – if it does exist – how that threat occurred from compromise to impact.

And that remains the case. I’ll dig much, much deeper into KQL in the Addicted to KQL series, but for our

purposes here in the Must Learn KQL series, you should have become comfortable with eyeing a query and

understanding it’s intent line-by-line. If you’re just joining us because this part/chapter has the

words Microsoft Sentinel and Analytics Rules on it, you’re starting at the wrong spot. I entreat you to jump

back to the beginning and ingest this series in the methodical, logical manner it was intended.

(If you have suggestions for the TOC for the Addicted to KQL series, let me know. Current TOC is

here: https://aka.ms/Addicted2KQL)

Keeping with the original plan to build your first Analytics Rule, we’re going to work together to

understand an existing Analytics Rule example that you can use in your own Microsoft Sentinel

environment. This example takes many of the concepts and operators we’ve learned together on this

journey, so you should be intimately familiar with them. And, if all works well, you should be on your way

to mastering KQL and hungry for what’s next. If you’re like me, this stuff just geeks you out. You may find

yourself thinking about Joins and Summarizations at strange times, but don’t fret – you are not alone. KQL

can do that. I regularly zone off thinking about table schema while the wife is telling me something that’s

probably important. Heck even my email signature is homage to KQL:

My email signature – make it your own!

https://aka.ms/Addicted2KQL
https://twitter.com/rodtrent
https://aka.ms/Addicted2KQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/kqlsignature.png?ssl=1

Feel free to steal that, by the way.

Analytics Rule

So, let’s take a well-established Analytics Rule and pick it apart. This one is intended to capture individuals

that run Cloud Shell in the Azure portal. This query/rule needs to be run in your own Microsoft Sentinel

environment and not in the KQL Playground (https://aka.ms/LADemo). To get results, someone must have

run Cloud Shell in recent record.

Run Cloud Shell

Cloud Shell activity is logged in the AzureActivity table. So, our first line of the query will be:

AzureActivity //the table - this is where Cloud Shell activity is logged

Once we’ve identified the table we need to query against, as per the Workflow discussion in part/chapter

3, it’s time to start filtering the data. So, using the Where operator covered in part/chapter 8, let’s dig into

what exactly identifies Cloud Shell usage.

In the filtering section of the query in the next samplet, we’re looking for CLOUD-SHELL in the

ResourceGroup data column, but then digging even deeper to get more accurate results by ensuring the

activity is related to a successful Start of storage creation. Anytime Cloud Shell is executed, storage is

created in Azure.

| where ResourceGroup startswith "CLOUD-SHELL" //filtering for Cloud Shell
| where ResourceProviderValue == "MICROSOFT.STORAGE" //To not mistake this for some other Cloud Shell
operation, also filtering on MICROSOFT.STORAGE. Storage is created anytime Cloud Shell runs.
| where ActivityStatusValue == "Start" //Making sure that the activity is the spawning of a new Cloud Shell
instance

The next thing we need to do is determine how many times the individual that has been captured has run

Cloud Shell. We do this with the Summarize operator as covered in part/chapter 11.

| summarize count() by TimeGenerated , ResourceGroup , Caller , CallerIpAddress , ActivityStatusValue
//Getting a count of how many times each individual has run Cloud Shell

The last thing we need to do is take a couple pieces of important information and assign them as Entities.

Entities are important for investigations. Without Entities, such as users, IP addresses, hostnames, file

hashes, etc. we would have no evidence, or no clues with which to progress through an actual

investigation. There are different ways to do this in the Analytics Rule wizard in Microsoft Sentinel, but you

https://aka.ms/LADemo
https://azurecloudai.blog/2022/01/05/must-learn-kql-part-11-the-summarize-operator/?WT.mc_id=m365-0000-rotrent
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/cloudshell.png?ssl=1

can also assign Entities in your KQL query by using the Extend operator to create custom data views – as

covered in part/chapter 13.

Microsoft Sentinel allows for four different custom entities in the queries. Those are:

• AccountCustomEntity – the user

• IPCustomEntity – the IP Address

• HostCustomEntity – the host (computer/device)

• URLCustomEntity – the capture URL the user accessed

Now, there’s a much deeper discussion that can be had on Entities because much has changed (and is

constantly changing) for this area in Microsoft Sentinel. See the following for more:

• Microsoft Sentinel entity types reference

• Classify and analyze data using entities in Microsoft Sentinel

But, for our purposes of learning KQL and applying the series’ knowledge, let’s stick with custom entities.

Shown in the example below, we are assigning the known data columns of Caller (user name) and

CallerIpAddress (user’s IP) to the custom entities. This will capture the user and the user’s IP address and

place them in the Entities list associated with the Microsoft Sentinel Incident once an alert is generated

based on our KQL logic.

| extend AccountCustomEntity = Caller //Assigning the Caller column - name of person - to
AccountCustomEntity - this is what is used for the User Entity in Microsoft Sentinel Incidents
| extend IPCustomEntity = CallerIpAddress //Assigning the CallerIpAddress column - IP Address of user's
system - to IPCustomEntity - this is what is used for the IP Entity in Microsoft Sentinel Incidents

So, our full and complete KQL query to use when creating the Analytics Rule is:

AzureActivity //the table - this is where Cloud Shell activity is logged
| where ResourceGroup startswith "CLOUD-SHELL" //filtering for Cloud Shell
| where ResourceProviderValue == "MICROSOFT.STORAGE" //To not mistake this for some other Cloud Shell
operation, also filtering on MICROSOFT.STORAGE. Storage is created anytime Cloud Shell runs.
| where ActivityStatusValue == "Start" //Making sure that the activity is the spawning of a new Cloud Shell
instance
| summarize count() by TimeGenerated , ResourceGroup , Caller , CallerIpAddress , ActivityStatusValue
//Getting a count of how many times each individual has run Cloud Shell
| extend AccountCustomEntity = Caller //Assigning the Caller column - name of person - to
AccountCustomEntity - this is what is used for the User Entity in Microsoft Sentinel Incidents
| extend IPCustomEntity = CallerIpAddress //Assigning the CallerIpAddress column - IP Address of user's
system - to IPCustomEntity - this is what is used for the IP Entity in Microsoft Sentinel Incidents

Use the following instructions to create an Analytics Rule with this query: Create custom analytics rules to

detect threats

And if someone in your environment has run Cloud Shell recently, an alert and Incident will be generated

that looks similar to the following:

https://azurecloudai.blog/2022/01/18/must-learn-kql-part-13-the-extend-operator/?WT.mc_id=m365-0000-rotrent
https://docs.microsoft.com/en-us/azure/sentinel/entities-reference
https://docs.microsoft.com/en-us/azure/sentinel/entities
https://docs.microsoft.com/en-us/azure/sentinel/detect-threats-custom
https://docs.microsoft.com/en-us/azure/sentinel/detect-threats-custom

Hey, look! Cloud Shell!

OK. Here’s our very last extra credit together for this series and it’s a reminder of some other things we’ve

done together along the way. There’s a bit more that we can do with this KQL query and Analytics Rule to

make it a bit more intelligent. What if there are certain “trusted” people in our organization who should be

able to run Cloud Shell without being captured as a potential suspect?

By creating a Watchlist (see: Create watchlists in Microsoft Sentinel) and modifying our KQL query slightly,

we can ensure that only those individuals who shouldn’t be able to run Cloud Shell are the only ones

captured in our alerts.

How do we do that? Let’s think back to part/chapter 17 for the Let statement and the section on Creating

Variables from Microsoft Sentinel Watchlists and part/chapter 8 when we discussed the allowable string

and numeric predicates for the Where operator.

The following example shows those adjustments. I have a Watchlist in my environment

called TrustedUsers that has a data column called Username. I maintain this Watchlist so that it contains the

most current list of trusted users.

https://docs.microsoft.com/en-us/azure/sentinel/watchlists-create
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/cloudshellexecutionincident.png?ssl=1

let watchlist = (_GetWatchlist('TrustedUsers') | project Username); //Putting the Usernames from our
Watchlist into memory to use later
AzureActivity //the table - this is where Cloud Shell activity is logged
| where Caller !in (watchlist) //filtering out our trusted users
| where ResourceGroup startswith "CLOUD-SHELL" //filtering for Cloud Shell
| where ResourceProviderValue == "MICROSOFT.STORAGE" //To not mistake this for some other Cloud Shell
operation, also filtering on MICROSOFT.STORAGE. Storage is created anytime Cloud Shell runs.
| where ActivityStatusValue == "Start" //Making sure that the activity is the spawning of a new Cloud Shell
instance
| summarize count() by TimeGenerated , ResourceGroup , Caller , CallerIpAddress , ActivityStatusValue
//Getting a count of how many times each individual has run Cloud Shell
| extend AccountCustomEntity = Caller //Assigning the Caller column - name of person - to
AccountCustomEntity - this is what is used for the User Entity in Microsoft Sentinel Incidents
| extend IPCustomEntity = CallerIpAddress //Assigning the CallerIpAddress column - IP Address of user's
system - to IPCustomEntity - this is what is used for the IP Entity in Microsoft Sentinel Incidents

Take the Assessment!

Did you complete the entire series?!! Well, congratulations! When you're ready, take the assessment and

receive a bona fide certificate!

The assessment is 25 questions taken directly from the Must Learn KQL series. So, you can take

advantage of the open book test, or challenge yourself by attempting to pass without help. Based on the

honor system, you can miss 5 questions (80%). Once completed, send an email request to

MustLearnKQL@sixmilliondollarman.onmicrosoft.com and request your certificate.

Take the assessment: Must Learn KQL Assessment

(https://forms.office.com/r/6MN69VXLUq)

mailto:MustLearnKQL@sixmilliondollarman.onmicrosoft.com
https://forms.office.com/r/6MN69VXLUq

Prepare for What’s Next!

Ready for more?

Check out the advanced KQL series called: Addicted to KQL

https://aka.ms/Addicted2KQL

LASTLY

Thanks so much for your interest in this series and in KQL. Many have completed the series and many

more will go through it. This series is – and always will be – a free series. Consider giving to others as you

give this newfound knowledge to yourself.

There's also a merch store where all proceeds go to St. Jude Children's Research Hospital.

(https://www.stjude.org/)

Check it out: MUST LEARN KQL STORE

(https://must-learn-kql.creator-spring.com/)

There’s even an “I passed!” version of the mug…

…along with a myriad of constantly new items including laptop stickers, t-shirts, hoodies, etc.

I’ll talk to you soon.

-Rod

https://www.stjude.org/
https://www.stjude.org/
https://must-learn-kql.creator-spring.com/

