THE SERIES
https://aka.ms/MustLearnKQL

ROD TRENT
CLOUD SECURITY ADVOCATE

This is part of an ongoing series to educate about the simplicity and power of the Kusto Query Language (KQL). If
you'd like the 90-second post-commercial recap that seems to be a standard part of every TV show these days...

The full series index (including code and queries) is located here:

https://aka.ms/MustLearnKQL

This book is updated every time a new part of this series is posted. The most current edition of this book will
always be located at: https://github.com/rod-trent/MustLearnKQL/tree/main/Book Version

Book release ver. 4.01, August 22, 2022 12:31pm EST

https://aka.ms/MustLearnKQL
https://github.com/rod-trent/MustLearnKQL/tree/main/Book_Version

Contents

Must Learn KQL Part 1: TOOIS QNU RESOUNICES ...ttt s s sass s sas s sa s s sasssssssssassssssassassssssassens 6
RETEI IO ..ottt ettt e s bt st 5884855855858 4552255855855 8 458258258888 R SRR SRR R Rkt 6
PraCiCE ENVIFONIMENTS oottt is s st e e84 4800t 7
ACEUAI BOOKS ... ceeis e eeeiss e sessss e essss s ess et 8888885884885 8 8244588444284 8 8281488588588 7
TOOIS ettt s8R 8RR E R84 ER£ER R8RSR ARt 7
BIOES, WEDSITES, QNG SOCIA .. .ottt sttt s st st 4558585888888 8855558t 7
VIO ettt ettt etk 8 8488848848888 R84 £E R8RSR 8
GITHUD QUEIY EXAIMPIES ...oorrieieeretes ettt etse st ssss st s st 5858455455845 5 5555855858555 858585858t 8

Must Learn KQL Part 2: JUST ADOVE S@A LEVEN ...ttt e s st st st s s e e s 8

MUSTE LEArN KQL PArt 3: WOFKFIOW ...t s s ssase e sassass s sassessasssassassasssassssseseaes 12
A COMMON KQL WOTKFIOW ...ttt s s s s s s s s s st s e sssasssasssssaseassessassssssssanees 13

Must Learn KQL Part 4: SEArch fOr FUN QN PrOfit ...ttt e e st ess s sase e sessase s sssass st ssesssassass s sassasssssaes 16

Must Learn KQL Part 5: TUFN SEAICH INtO WOFKFIOW ...ttt 20

Must Learn KQL Part 6: INErface INTIMQACY ...ttt st sss s sss st sttt 23

Filtering throUgh The TaDIE @IEIMENTS ...ttt es e eS8 24
SOMTINEG FESUITS .ottt ettt et e st b85S 8 8882828584584 5458582854858 8 58 e ettt 24
GIOUPINE FESUILS oottt es et et ss e e s s8££ 8858848458845 8428888822858 8RR 8588 SRRttt 25
SeleCtiNgG COIUMNS £O TISPIAY w..ouuieerierii etttk e s8Rttt 26
SEIBECT @ LI FANEE oottt ettt et s 8848588845882 5 8584588482858 R 85885 27
CAIES oottt 28
EXTRA .ottt st ssss s s 8585885825582 58 8455825882455 825885855 29
SAVE SEATCN QUETIES oottt ss s s ss et s 2588288585854 8 5488585588588 8 R8sttt 29
SAIE QUEBIIES! ...ttt a et s et et s st ss st s s e s s s s s s s s e se s es e s st ss e s s saes s aassaes 30
FOTMNIAT QUEIY bbb o b s e b e bbbt 31
(@ TR LY G TI S CT=] Lo IO PO 32
EXPOITING QUEIIES ..ottt s8££ 2828 bbb b e bbb n b et st st sentees 32
INEWW ALEIT RUIE oottt es ettt 2448585485485 8 2558882482584 8 24258588888 33
PiN tO DASHDOAIA OF WOIKDOOKcuiiierieeeeieieceieeceie ettt essee s ss sttt 33
SOEEINMES ettt eese s et s s8R 8RR R84 R8 8RR £ R ERR ARt 35
IN-U T RETEIEINCE ... ettt et e 8888884488888 4888 36
TS ettt etttk RRRRR RS8R 588 8RR 5888 R 8RS8 R AR RS AR R Rt 37
KEYDOAITING SNOITCULS ..ottt 84S 8 R8RSRt 37
INERITISENSE FOI TNE WIN .ottt et s8££ 38
Must Learn KQL Part 7: SCREMIA TAIK ...t es st s e s s s s s s s s s s sasessessssesssesssessessssssaensssesssesaees 40
COIUMIN TYPES ..ottt ittt s s 4 48852828+ 8 4584540858588ttt 42

Back to the Ul et e ettt ettt e ettt e ettt s e et et et et e s e sttt ae et e e s e seeteeaee et aeeaereseennenn 42

SCNEIMIA AT FOCUS oot ee e e e e ee e seeseeseas s s e ae et aseaseaseassesssaeeseaeeaseaseaeseseesaeaeesseaeeassassasseeseeaeeaeeaseassesaesasaneaseaseassaesssaesnesseaesaseasssnenes 44

MuUSt Learn KQL Part 8: THE WNEIE OPEIATON ... ieeeeeeeeieeeeeeeieseeessseeesssee st sssseesssses st st ss s 2s 885888888888 48
HaNAS-0N RECOMIMENAATIONS ..ottt et st et ssss st ss st 8428858555858 8 555585885 E bbb 48
WV NEIE O PBIATON ...ttt ettt e85k 8 8884454845848 888888 48
Must Learn KQL Part 9: The Limit @Nd TAKE OPEIATOIS ... iineeiisesssses st st st ssssss st st sssssssssssssssssss st sssssssssssssssssssssssssssssnssssssnns 52
Must Learn KQL Part 10: THE COUNT OPEIATON ... ireuuieeeeseeeeseeeetseeesseeessssessssseessssessssses st st sss s ssss st 5858158810888kt 55
Must Learn KQL Part 11: The SUMMIATIZE OPEIATONooivierrrieeriisesessee s sssessssses st st sss st ssssss st st ssssssss st ssssssssssssss st sssssssnsssssnns 59
Must Learn KQL Part 12: THE RENAEE OPEIATONuieeuereeueeeeeeeieseeeasee st ssssseessseesssses st st ess s ssss st 885881588kt 62
Must Learn KQL Part 13: T EXTENT OPEIATONierieeeieiesiisesisses st st ssssssssssss st sttt sss 5555558558885 8 st 67
Must Learn KQL Part 14: THE ProJECT OP@IATON ... ieeereeeeseeeesieeessee st ssssseesssesessses st essssessss s ssss st s 5815881058818k 72
Must Learn KQL Part 15: THE DISTINCE OP@IATONiiereeeeeieiesiesesessessssss st sssssssssses st st sssssssssssssssssssssssssssssesssssssssssssssssnsssssnesssssssssssssssssnsssssnsssssnnns 76
ATTYOU, DADY! ...ttt esss s esss st st 8 8885858858828 8582558588255 588558 78
Must Learn KQL Part 16: The Order/SOrt and TOP OPEIALOIS ...ttt ssss sttt sttt st sssssss s sssss st st ss st ssnsssnes 79
Must Learn KQL Part 17: TRE LT STALEMIENT ...ttt ss s s s sasss st s s sassssssssassassssssassssssassans 81
Creating Variables frOM SCIAtCN.... . ettt sttt bS8 ssnsb 82
Creating Variables frOM EXISTING Data.... .o rereeieeeesieeeeseeeesseee s essseeesssesesss st et ss 2888888888888kt nbe 83
Creating Variables from MicroSOft SENTINEI WATCRIISES ...ttt ss s sss sttt sttt sss st 83
Must Learn KQL Part 18: THE UNION O D@ ator . ..o reereeeeeeeeeeseeesseeessseessssseessssesssssessssssesssssessssseesssssssssssssssssasssssasssssessssssesssssesssssesssssesssssasssssesssssessssnnes 85
Must Learn KQL Part 19: TRE JOIN OPEIATON ... irrieerieeeiieeiseesseessesssssssssesssssssssesssssssssessssssssssssnsssssssssnssssnsssnns 87
Must Learn KQL Part 20: Building Your First Microsoft Sentinel ANAlYTiCS RUIE ...ttt eesseessssssss e ssssssssssssss 90
AANGIYEICS RUIE oottt stk 8 8585858588154 5454585458888kt 91
TAKE The ASSESSIMENT! ...ttt e e e e 95
PrEPAre FOIr WRNAT'S INEXT! ...ttt b bbbkt beeses b nn s st s 96

LASTLY ettt as sttt 97

Must Learn KQL Part 1: Tools and Resources

After hearing that our customers’ largest barrier to using things like Defender, Microsoft Sentinel and even
reporting for Intune is KQL, the query language, that was a wake-up call for me. And, of course, (if you
know me) | want to do something about it. KQL is a beautifully simple query language to learn. And,
believe me - if | can learn it, there’s no question that you can learn it. | feel bad that there’s just not
enough knowledge around it because I've taken for granted that everyone already had the proper
resources to become proficient. But that's not the case.

Internally, plans are being developed now to make KQL learning a bigger focus and you'll see new
education around this query language start to take shape in various areas on the Microsoft properties and
elsewhere. So, that's good news for everyone.

There's bits and pieces already scattered about the Internet, but they are seemingly now difficult to
identify and locate.

So, as a first step in a series that I'll be writing called “Must Learn KQL", | want to supply some good
resources that can be used to accomplish the other things I'll talk about going forward. Some of these |
use every day. Some | use only when the need arises, but they're valuable, nonetheless. This is a working
document, so expect updates over time. This is not a definitive list by any means, so if you have other
resources not listed here that you find valuable and believe others would benefit, let me know and I'll add
them in.

Stay tuned as | map out this series. Of course, since my area of forte at Microsoft is security, the series will
be security focused. So, the knowledge you gain will help you with our security platforms but also
anything data centric that utilizes KQL.

One last tidbit of a tip... | use Microsoft Edge’s Collections feature quite a bit. This is an extremely useful
tool for capturing and grouping topics. If you find any of the links below valuable, | suggest using Edge
Collections so you can always come back to them later.

BIG NOTE: If you're reading a paperback or hardcover edition of this book, please go to
https://aka.ms/MustLearnKQL to gain access to the actual links provided in this book.

Reference

The code repository for this series (GitHub)

Kusto Query Language Reference Guide

Azure Monitor Logs table reference

Marcus Bakker's Kusto Query Language (KQL) - cheat sheet

SQL to Kusto cheat sheet

Splunk to Kusto Query Language map

https://aka.ms/MustLearnKQL
https://github.com/rod-trent/MustLearnKQL/tree/main/Examples
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-category
https://github.com/marcusbakker/KQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/sqlcheatsheet
https://github.com/MicrosoftDocs/dataexplorer-docs/blob/main/data-explorer/kusto/query/splunk-cheat-sheet.md

Kusto Query Language in Microsoft Sentinel

Useful resources for working with Kusto Query Language in Microsoft Sentinel

Practice Environments

Write your first query with Kusto Query Language (Learn module)

KQL Playground - only need a valid Microsoft account to access.

Data Explorer - not security focused. Contains things like geographical data and weather patterns.
Exercises for this can be found in the Learn Azure Sentinel book below.

Actual Books

Learn Azure Sentinel: Integrate Azure security with artificial intelligence to build secure cloud systems -
this book uses Data Explorer (see above) for hands-on exercises.

Microsoft Sentinel in Action: Architect, design, implement, and operate Microsoft Sentinel as the core of
your security solutions - this book is the next edition of the one just above and also used Data Explorer
for hands-on examples.

Tools

Kusto.Explorer - a rich desktop application that enables you to explore your data using the Kusto Query
Language in an easy-to-use user interface.

Kusto CLI - a command-line utility that is used to send requests to Kusto, and display the results.

Visual Studio Code with the Kusto extensions pack

Real-Time KQL - eliminates the need to ingest data first before querying by processing event streams with
KQL queries as events arrive, in real-time

getschema operator - As | noted in Part 5 of this series: this is the Rosetta stone of KQL operators. When
used, getschema displays the Column Name, Column Ordinal, Data Type, and Column Type for a table.
This is important information for filtering data. Part 5 talks about this.

Blogs, Websites, and Social

#MustLearnKQL - the official Twitter hashtag of this series

The #KQL hashtag on Twitter

The #365daysofkgl hashtag on Twitter

Kusto King

The KQL Cafe = podcast and community

https://docs.microsoft.com/en-us/azure/sentinel/kusto-overview
https://docs.microsoft.com/en-us/azure/sentinel/kusto-resources
https://docs.microsoft.com/en-us/learn/modules/write-first-query-kusto-query-language/
https://aka.ms/LADemo
https://aka.ms/DataExplorer
https://amzn.to/3OP16fr
https://amzn.to/3OzhXmd
https://amzn.to/3OzhXmd
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-explorer
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-cli
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=rosshamish.kuskus-extensions-pack#:~:text=Extensions%20%20%20%20Kuskus%20Kusto%20Extension%20Pack,Document%20%20...%20%201%20more%20rows%20
https://pypi.org/project/realtimekql/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator
https://azurecloudai.blog/2020/09/01/unleash-the-rosetta-stone-of-schema-knowledge-for-your-azure-sentinel-data/#:~:text=getschema%20is%20a%20powerful%20and%20useful%20operator%20for,try%20and%20let%20me%20know%20what%20you%20think.
https://azurecloudai.blog/2020/09/01/unleash-the-rosetta-stone-of-schema-knowledge-for-your-azure-sentinel-data/#:~:text=getschema%20is%20a%20powerful%20and%20useful%20operator%20for,try%20and%20let%20me%20know%20what%20you%20think.
https://twitter.com/search?q=%23MustLearnKQL
https://twitter.com/search?q=%23KQL
https://twitter.com/search?q=%23365DaysofKQL
https://www.kustoking.com/
https://kqlcafe.github.io/website/

Video

Teachl]ing's KQL Tutorial Series

Recon your Azure resources with Kusto Query Language (KQL)

How to start with KQL?

Azure Sentinel webinar: KQL part 1 of 3 - Learn the KQL you need for Azure Sentinel

Azure Sentinel webinar: KQL part 2 of 3 - KQL hands-on lab exercises

Azure Sentinel webinar: KQL part 3 of 3 - Optimizing Azure Sentinel KQL queries performance

Querying Azure Log Analytics (with KQL)

GitHub Query Examples

My GitHub repo for Microsoft Sentinel KQL

The official Microsoft Sentinel repo

Wortell's KQL queries

Clive Watson's KQL queries and workbooks

Matt Zorich's (the originator of the #365daysofkql Twitter hashtag) KQL queries

Must Learn KQL Part 2: Just Above Sea Level

To start the journey learning KQL in this Must Learn KQL series, it's helpful to understand where the name
KQL came from and why the reference makes so much sense. Once you understand the idea behind the

query language, a lightbulb should go off and prepare you for the rest of the series through an expanded
scope of learning capability.

Plus, not everyone knows about this, so you'll be the cool kid. And, if you ever play Trivial Pursuit and this
guestion comes up, you'll win the pie piece and possibly the entire game. How can that not be good
knowledge?

The question?

https://www.youtube.com/watch?v=UwcBvVkTCpc&list=PLM3TOIlrnaI4hwmXTxrYGE665q-9fyTfB
https://www.youtube.com/watch?v=DuWBLsgqhaI
https://www.youtube.com/watch?v=ocmfWMPqZPM&t=290s
https://www.youtube.com/watch?v=EDCBLULjtCM
https://www.youtube.com/watch?v=YKD_OFLMpf8
https://www.youtube.com/watch?v=jN1Cz0JcLYU
https://www.youtube.com/watch?v=92oJ20XeQso
https://github.com/rod-trent/SentinelKQL
https://aka.ms/ASGitHub
https://github.com/wortell/KQL
https://github.com/clivewatson/KQLpublic
https://github.com/reprise99/Sentinel-Queries

Where does the name Kusto come from? (from Kusto Query
Language)

To help explain this, | harken back to my childhood. Bear with me for a minute...

Growing up, my family was one of those families that attended church anytime the church doors were
open. As such, the majority of my parents’ friends were at church. This meant that they would spend time
before and after church services catching up with their friends, sometimes in a local restaurant where
they'd all gather to have pie and coffee. Of course, Facebook didn't exist then, so in-person connections
were even more important. Well...and there was pie. My mom wanted to catch up with everyone she
hadn't seen in a few days so this meant that our round-trip from home to church and back could take 3-4
hours.

On Sunday nights this was particularly problematic for me in that | wanted to rush home to catch TV
shows like the Six Million Dollar Man, The Magical World of Disney, Mutual of Omaha’s Wild Kingdom, and
the TV show that's the topic of our discussion here: The Undersea World of Jacques Cousteau...

That's right. KQL is named after the undersea pioneer, Jacques Cousteau.

THE

U"DERSEA e
NORLD»

JACQUES .
COUSTEAU

CONSIDERED ONE OF THE MOST llMl;(ll ANT

RT
QUERY LANGUAGES 0F Al ME

| loved this TV series. It was absolutely enthralling to me to understand that an entire world existed
beneath the ocean waves and this unknown world was being brought to me by this wonderful, thick-
accented explorer each week who dedicated his life to discovering what existed beneath the surface
depths.

So, as you can imagine, | tried my dead-level best every Sunday night to rush my mom along. It didn't
always work and was mostly just annoying, and you can bet | caught a few groundings from my insistence.
But, still, this topic of discovering the undiscoverable drove me to concoct every type of machination
imaginable to get home sooner on Sunday nights. | can’t tell you the number of times | faked illness on

https://www.imdb.com/title/tt0071054/?ref_=nv_sr_srsg_0
https://www.imdb.com/title/tt0046593/?ref_=nv_sr_srsg_0
https://www.imdb.com/title/tt0121949/?ref_=nv_sr_srsg_0
https://www.imdb.com/title/tt0192937/?ref_=fn_al_tt_1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/jacques.png?ssl=1

Sunday afternoon in attempt to stay home Sunday night. And, as you can imagine my mom quickly caught
on and instituted a policy that if | stayed home on Sunday nights, | couldn’t go to school on Monday.
Which...at the time...I truly loved school, so that halted that plan. Give me a few years, and that wouldn't
have worked. Timing is everything.

So, KQL is named after Jacques Cousteau. Even today, you can find evidence of this in our own Azure
Monitor Docs. If you go to the datatable operator page right now, you'll still find a reference to Mr.
Cousteau in an example that lists his date of birth, the date he entered the naval academy, when he
published his first book entitled “The Silent World: A Story of Undersea Discovery and Adventure,” and the
date of his passing.

Example

Kisto

So, | hope you're catching on to this. If not, what is it that we are trying to accomplish when we query data
tables for security purposes? What is it that we're trying to accomplish though Hunting exercises and
operations?

The answer? We are exploring the depths of our data. We are attempting to surface the critical and
necessary security information that will tell us about potential exposure through simple, powerful queries.

Much like the story of the failed voyage of the Titanic. It wasn't the beautiful, pristine, easy-to-see and
avoid iceberg mass that existed above the surface of the ocean that sunk the unsinkable ship and sent
over 1,500 people to their grave. No, it was the huge mass under the surface that the captain and crew
couldn’t see and couldn’t swerve to avoid that doomed the luxury passenger liner.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/datatableoperator?pivots=azuredataexplorer
https://amzn.to/3yLizP4
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/datatable.png?ssl=1

Time range : Custom Save Copy hnk

Trafficoirection - Unknos . Country=

TrafficDirection « 1 (Direction 1. wtbound™,

TrafficOirection - 1ff(CommunicationDirection !«

TrafficDirection » iff(CommunicationDirection I»

Type == "M

Trafficolrection - Iff(Direction 1« bound™,
¢ Asnotespty(MaliclousipP) isnotemspty (Country) o

Latitude == 3 Longltude ==

Confidence «»

Indicatorthreatiype == “llotnet

-‘ V_—,‘ _. § Results Chant Columns

‘R ¢§U,!I,3 R O‘NS and colu mn ‘ ' 7 v Completed. Showing results from the custom time range.

W2T/2020, G12:51.000 PM
S27/2020, 61251000 PM

S/27/2020, S:5T44.000 PM

Tenantid ALB6ISY- Thalt-495c- alOd-cod JOIBR2
Somaco Systemn OprManager

TimeGenerated [UTC) 2020 05 2TT2VSTAAL

Coenpuster wINgY

Mok wnmdP SRATTAR229

Indicator Thicat Type Botnet

Confidence L4
Severity 2
FirstReposted Date Thme 2020-05-26722:11:30.0000000Z

LastioportedDate T sme 2020 05 27T20:2u51.524037172

And, like that, it's the information that exists underneath the viewable rows and columns of data in our
tables that we need to expose to identify threats and compromise and use to guard the gates. Just the
initial rows and columns of exposed data isn't enough. We must delve into the depths of the data to find
actionable information. And we need to do it quickly.

| hope all this makes sense.

It's as important to know why we do things, sometimes, as how to do them. Like Jacque Cousteau, security
folks are explorers. We are mining the depths of the data no one sees to protect the environment against
ever-growing and constantly evolving threats. We are discovering the undiscoverable.

KQL is an amazing and important piece of this capability. KQL was developed to take advantage of the
power of the cloud through clustering and compute. Using this capability, KQL is designed as a well-
performing tool to help surface critical data quickly. This is a big part of why it works so well and outshines
many other query languages like it. KQL was built for the cloud and to be used against large data sets.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/DangerData.png?ssl=1

As a security person, you know that if a threat exists in the environment, you are on the clock to discover
it, report it, investigate it, and remediate. A poorly performing query language can be the biggest barrier
to that and become a security flaw. I've sat with customers who use other query languages and other
SIEM-like tools that thought it was status quo that query results would take hours or sometimes days.
When | showed that KQL produced those same results in seconds, they were astonished. So, the
technology and infrastructure behind the query language is also critically important.

In the next post, I'll talk about the actual structure of a query. Even though the structure can deviate,
understanding a common workflow of a KQL query can have powerful results and help you develop the
logic needed to build your own workflows when it's time to create your own queries. In addition to being
well-performing to enhance efficiency, the query language itself is simple to use and learn which, in turn,
makes for more efficiency.

So, while we're Just Above Sea Level in this post (I hope you now appreciate the reference), we'll be using
KQL as the sonar and diving bell to search the depths of our data.

Must Learn KQL Part 3: Workflow

As | noted in Part 2 of this Must Learn KQL series...

Even though the structure can deviate, understanding a common workflow of a KQL query
can have powerful results and help you develop the logic needed to build your own
workflows when it's time to create your own queries.

Rod Trent, November 18, 2021

The workflow (some folks call it logic, others call it anatomy, even others call it something else) is a big step
into wrapping your mind around how to produce a KQL query. Just like a developer, assigning uniform,
repeatable steps ensure you're not missing something and that your query results will produce the
information you are looking to capture.

| tell customers all the time that it's not necessary to be a pro at creating KQL queries. It's OK not to be a
pro on day 1 and still be able to use tools like Microsoft Sentinel to monitor security for the environment.
As long as you understand the workflow of the query and can comprehend it line-by-line, you'll be fine.
Because ultimately, the query is unimportant. Seriously. What's important for our efforts as security folks
is the results of the query. The results contain the critical information we need to understand if a threat
exists and then - if it does exist - how that threat occurred from compromise to impact.

Now, those that go on to develop their own queries and own Sentinel Analytics Rules after becoming a
KQL pro will be much more capable. And that should be your goal, too. BUT don’t get hung up on that.
Again, it's about the results.

We've made it so crazily easy to share KQL queries that it's quite possible you may never have to create
your own KQL query (aside: I highly doubt it but COULD BE possible).

In a future post in this series, I'll go over the actual interface you use to write and run the KQL queries in-
depth but suffice to say that almost every service in Azure has a Logs blade (option in the Azure portal
interface/menu) to accommodate querying that service's logs. This area provides for saving your queries,
but also to share your queries.

Feedback Quenes

Time range : Last 24 hours . New alert rule Export Pin to dashb

1 SecurityEvent Copy link to query
where EventID ==
t Computer, Account Copy query text
Account == "WORKGROUP\\Windows3655ent]i
| summarize count() by Account Copy results

Share to community

Results Chart Columns .) Group columns
Completed. Showing results from the last 24 hours.
count_

WORKGROUP\Windows3655... 4.335

Share your queries

Because of this built-in capability, many of our customers regularly share their creations with each other,
other colleagues, to their own blogs and GitHub repos, and even to the official Microsoft Sentinel GitHub
repository (https://aka.ms/ASGitHub). In Part 1 of this series, | supplied links to these and more. So, to
prove my point...yes, it's absolutely possible you might not have to write your own KQL query for a long
time.

So, because of that, it becomes even more critical that you at least understand the workflow. Again, if you
can read a query line-by-line and determine that the results will produce what you are looking for, you're
golden. If, through your newfound understanding, the query can’'t meet your requirements, you can
modify it by line instead of a wholesale adaptation. This should be your first KQL goal: read queries.

Through this series, I'll provide queries for you to use and get hands-on experience because | believe in
learning by doing. We'll be using the links in the Practice Environments section in Part 1 for hands-on.
But focus initially more on the structure and logical workflow.

And, with that...

A Common KQL Workflow

To get started on the journey to learning KQL, let's look at the standard workflow of a common search
query. Not the search operator (I'll talk about in the next post), but the search query. This is the query
structure we use to search, locate information, and produce results.

https://aka.ms/ASGitHub
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/sharethis.png?ssl=1

The following represents the common workflow of a KQL search query.

P.S. I've enabled image linking in this post so you can click or tap to open the image in a larger view. So, you can
open the image in a new window or new tab to better follow along.

2

Modify

Pipe
Command
separation

1 ———— 4

Results

columns

Let's break this query down by the steps.

1.

The first step is to identify the table we want to query against. This table will contain the
information that we're looking for. In our example here, we're querying the SecurityEvent table.
The SecurityEvent table contains security events collected from windows machines by
Microsoft Defender for Cloud or Microsoft Sentinel. For a full list of all services tables, see

the Azure Monitor Logs table reference (also available in Part 1).

The pipe (|) character (the shifted key above the Enter key on most keyboards) is used to
separate commands issued to the query engine. You can see here that each command is on its
own line. It doesn’t have to be this way. A KQL query can actually be all one single line. For our
efforts, and as a recommendation, | prefer each command on its own line. For me, it's just
neater and more organized which makes it easier to troubleshoot when a query fails or when |
need to adjust the query to produce different results.

Next, we want to filter the data in some way. If | simply entered the table and ran that as its
own, single query, it would run just fine. Doing that returns all rows and columns (up to a limit -
which I believe is now 50,000 rows) of the data stored in the table. But our goal is getting exact
data back. As an analyst looking for threats, we don’t want to have to sift through 50,000 rows
of data. No, we want to look for specific things. The Where operator is one of the best ways to
accomplish this. You can see here in the example that I'm filtering first by when the occurrence
happened (TimeGenerated) and then (remember the pipe character - another line, another
command) by a common Windows Event ID (4624 - successful login).

The next step in our workflow is to provide data aggregation. What do we want to do with this
filtered data? In our case in the example, we want to create a count of the Accounts (usernames)
that produced a successful login (EventID 4624) in the last 1 hour (TimeGenerated).

https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-category
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/searchnumbered.png?ssl=1

5. Next let's tell the query engine how we want to order the results. Using the Order operator, I'm
telling the query engine that when the results are displayed, | want it shown in alphabetical
order by the Account column. The ‘asc’ in the query in the Order Data step is what produces
this ordering. If we wanted descending order, we'd use ‘desc’. Don't worry, we'll dig deeper into
each of these operators as we go along in the series.

6. Generally, the last thing that I'll do with this search query is tell the query engine exactly what
data | want displayed. The Project operator is a powerful command. We'll dig deeper into this
operator later in this series, but for our step here, I'm telling the query engine that after all my
filtering, data aggregation, and ordering, | only want to display two columns in my results:
Account and SuccessfulLogins

So, let's recap what this query accomplished...

It searched our stored security events in the SecurityEvent table for all Accounts that had a successful login
in the last hour and chose to display only the Account and number of successful logins per Account in
alphabetical order.

7. Our search query output is exactly that:

Results Chart Columns

Completed

NAGAUNSCOM_DWRead

NT AUTHORITY\SYSTEM

Search query output

See that? The Account column is in alphabetical order ascending and the SuccessfulLogons column shows
how many times each Account successfully logged in.

If you need to, jump back through each step above until you get a good understanding of the workflow.
Again, this is very common, and you'll see this structure many times working with Microsoft Sentinel and
Defender products. Remember, it's about the results. If you can look at this example and get a good
feeling that you understand how the results were accomplished, line-by-line, you're on your way.

| invite you, though, to take this example and copy/paste it into a Logs environment to test. You can have
this query to play with it in your own Microsoft Sentinel environment or using the KQL Playground |
provided as a resource in Part 1.

SecurityEvent

| where TimeGenerated > ago (1h)
| where EventID == 4624

| summarize count() by Account

| order by Account asc

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/orderoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://aka.ms/LADemo

| project Account, SuccessfulLogons = count_

This query is also available from the GitHub repository for this blog series: https://aka.ms/MustLearnKQL

I'd like to share one extra tidbit with you that you might find helpful as you start testing this KQL query
example in your own, or our, environment.

Every language (scripting, coding, querying) has the capability to add comments or comment-out code
through special characters. When the query, scripting, or development engine locates these characters, it
just skips them. KQL has this same type of character. The character for KQL is the double forwardslash,
or//

When you start testing this post’'s KQL query example, comment-out a line or two (put the double
forwardslash at the beginning of the line) and rerun the query just to see how eliminating a single line can
alter the results. You'll find that this is an important technique as you start developing your own KQL
queries. I'll talk about this more later, too.

In the next post (Part 4) I'll talk through another, yet just as powerful, way to search for information using
KQL that is a top pocket tool for Threat Hunters.

And, then I'll come back for Part 5 and show how to tie together both search methods to create the full
operation of hunting to Analytics Rule. But don't worry, that's not the end. | have no clue how many parts
this series be. A lot of it depends on you.

Must Learn KQL Part 4: Search for Fun and Profit

Now that we have some understanding of the workflow (from Part 3) under our belts, I'm going to deviate
from that for a brief minute in this post and then I'll bring it back together in Part 5 and combine Parts 4
and 5 to provide something extra meaningful to show you how it all fits together like an unsolved Hardy
Boys mystery novel. Hopefully, you're starting to see that my efforts here are logical and designed to
accumulate enough knowledge that is necessary to move to the next plane of understanding.

What | want to do in this post, is give you something you can actually use today. When I'm done here, you
should be able to take the knowledge and the query snippets to do your own hunting - or, rather, look
inside your own environment to get an understanding of what is happening that's worth exposing and
investigating.

One of the easiest ways to get started with KQL is the search operator. In Part 3, | talked through the
structure and workflow of a search query. In this post, I'll talk about the search operator (or command) and
how it could be the most powerful KQL operator in the universe but will always be the best tool in the
toolbelt to start any search operation.

https://aka.ms/MustLearnKQL
https://amzn.to/3IDeBwi
https://amzn.to/3IDeBwi
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer

Search is the first operator | reach for when trying to verify if something exists within the environment. In
fact, our whole goal for using KQL as a security tool is to answer the following questions:
1. Does it exist?
Where does it exist?
Why does it exist?

W

BONUS: There’s a final question to this that’s not part of this KQL series, but one that’s important to
the total equation and one that should be part of your SOC processes. That question is: How do we
respond?

If you click or tap the image to open it in a larger view, you'll see how the power of the search operator
enables you to answer these questions.

It starts with an idea or theory that “something” exists in the environment. You may have gotten this idea
from a dream or nightmare that someone in your organization is performing nefarious activities. But,
most likely, the idea came from a news report or a post on social media from a trusted source about a
nation-state actor being active with a new kind of ransomware.

Once these reports are available, someone (like Microsoft) will supply the Indicators of Compromise (I0Cs)
So you can search your environment to see if they exist. IOCs could be several things including filenames,
file hashes, IP addresses, domain names, and more.

If they don't exist, you move on. If any of them do exist, you start to dig deeper to figure out where they
exist, so you can, for example, quarantine systems or users, or block IP addresses or domains.

And, then you need to determine why they exist. Did a specific user click on something they shouldn’t
have clicked on in an email? Or did a threat actor successfully compromise a Domain Controller through
control over a service or elevate user account? Could it be that there is more impact on your environment
than you originally thought?

All of this can be exposed through the simple process of search using the search operator.

Let's walk through this together with a few simple queries that you can take and use to test your own
environment. (click or tap the image to open the larger version in a new browser tab to follow along)

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer

Time range ; Last 4 hours

1

Rasults Chart Columns

Completad. Showing results: from the last 4 hours

¥
¥
¥

Resutts Chart
¥

ST g— Completud. Shiwing e
sMenn. <

LAQueryLogs
Deicefegistrybuents

Demricebiatmarkvests

D magiload Evnts

Malltisraaccimeind [TODMBS0 THAT ANGS BSES SEalO0d.. TTONSEA0 VIdT ABaS]
Malitsemacremed [Todasdn fhd? AlaS 2588 stamaod . (rodesdo d7 Amas
Ml tmernAcored - ? 5 .. ITOdasd0 PRdT AlaS
Ml tremacoeed o 7 5 fdasdo ThiT Anas
send - fmdasdn. 7hiT-anss
Malitesrnaccesed Tis .. TTodasdi- TdT-48a5

Mailltematorissed TTOMMGSN-TIAT-AB35 ASE5-SEaE00_. TTOGAEM0- 7IdT-4835

Who, What, When, Where?

In step 1 in the image, I'm performing a simple search for a username. In this case, it's an ego search - I'm
searching in my own environment for my own activity. This could be an 10C that you want to search for.
Just replace my name with the string of text you want to expose in the results.

search "rodtrent”

As you can see in the image, my search produced results, telling me that this thing | searched for does exist
in my environment.

Since it does exist, | want to understand where it exists. | do this by making a simple adjustment to my
original query by adding a line that tells the query engine to just show me the specific tables that my IOC
exists in. This will give me a good indication of what type of activity it was. Step 2 shows...

search "rodtrent”
| distinct $table

Let's assume that I'm looking for user activity because the reported threat is malware. | know that user
activity is most generally recorded and contained in a few places including Microsoft Office and Defender
for Endpoint.

In my example in Step 3 in the image, I've adjusted my search operator query to focus only on the
OfficeActivity table. Here is what that looks like:

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/searchesnos.png?ssl=1

search in (OfficeActivity) "rodtrent”

Now that | have my results of rodtrent’s activity in the OfficeActivity table, | can begin sifting through the
rows and columns of data to learn more about the occurrence and to start to tune my query even more.

/2272021, 7:27:07.000 AM OfficeActivity MailltemsAccessed f70d46d0-7fd7-48a5-8586-e6a8199d... f70d46d0-7fd7-48a5
1/22/2021, 7:27:21.000 AM OfficeActivity MailltemsAccessed f70d46d0-7fd7-48a5-8586-e6a8199d... fT0d46d0-Tid7-48a5
/2272021, 7:27:20.000 AM OfficeActivity MailltemsAccessed f70d46d0-7fd7-48a5-8586-e6a8199d... f70d46d0-7id7-48a5

1/22/2021, 7:27:21.000 AM OfficeActivity MailltemsAccessed fT0d46d0-7fd7-48a5-8586-26a8199d... fT0d46d0-7fd7-48a5

Stable OfficeActivity

Tenantid e73fcae6-0260-4da5-9d56-f9e36d6db6T1
RecordType Exchangeltem

TimeGenerated [UTC] 2021-1-22T12:2721Z

Operation MailltemsAccessed

Organizationid f70d46d0-7fd7-48a5-8586-e6a8199d4de5

Organizationid_ f70d46d0-7fd7-48a5-8586-e6a8199d4deS

UserType Regular

Results from the OfficeActivity table

When we come back for Part 5, I'll show you how to turn your search query into a workflow like | talked
aboutin Part 3.

One last thing for this post. | mentioned that user activity is generally reported from the Microsoft Office
and Defender for Endpoint tables. I've given you examples for searching the OfficeActivity table. But
Defender for Endpoint is more than one table. In fact, Defender for Endpoint consists of the following 10
tables: DeviceEvents, DeviceFileCertificateInfo, DeviceFileEvents, DevicelmageLoadEvents, Devicelnfo,
DeviceLogonEvents, DeviceNetworkEvents, DeviceNetworkInfo, DeviceProcessEvents, and
DeviceRegistryEvents.

Fortunately, the KQL search operator supports the wildcard character. So, you can search for those 10Cs
across the entire Defender for Endpoint solution by doing the following:

search in (Device*) "rodtrent"

And, incidentally, if you have the Defender for 365 Data Connector enabled for Microsoft Sentinel and you
enable the Microsoft Defender for Office 365 logs, the OfficeActivity table isn't the only Microsoft Office
data you can query. Enabling these logs gives you access to EmailEvents, EmailUrlinfo,
EmailAttachmentinfo, and EmailPostDeliveryEvents tables which means you can take advantage of the
search operator’s wildcard capability here, too.

All of the query code in this post is contained in the series’ GitHub repo here: https.//aka.ms/MustLearnKQL

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer
https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/11/resultsnow.png?ssl=1

P.S. Enjoying this book? Share it with someone!

Must Learn KQL Part 5: Turn Search into Workflow

Now, that we've talked about using the Search operator in Part 4 to answer those three basic SOC analyst
questions of: 1) Does it exist? 2) Where does it exist? and, 3) Why does it exist?, we can take that learning
and the results of that type of query and meld it with the standard search query structure | talked about in
Part 3.

In part 4, | ended with a query to locate activity by a user called “rodtrent". | found that this rodtrent person
had performed potentially strange activity in the OfficeActivity table (the table for Office 365 activity) that
needs to be checked out. As shown, the search operator is a powerful tool to find things of interest. The
results of the search operator query were thousands of rows of data. That's inefficient.

So, now that we've found something interesting, we want to use the structure of the Search Query to pare
down the results to minimize the effort and workload to identify that that something interesting is actually
something notable and worth investigating.

If you need to, open Part 3 in a new Window or browser Tab to review the Search Query Workflow as |
walk through the next section.

In the following example, note that this is a non-issue situation, but | want to start with a basic Search
query before we start building toward more complex queries in future posts to get a fully rounded
understanding of the “why” behind why we do this. The one below is even simpler than the one discussed
in Part 3 where | also talk about aggregating and ordering data. I'll come back to those concepts later,
particularly when | get into creating your own in-query visualizations like pie and bar charts. No, for our
efforts in this post, | want to focus on how easy it is to filter the data. Again, KQL isn’t hard, and some of
your most powerful queries may only be a few lines of code.

Turning your hunting operations into more formal Search structure queries is the building block for
creating your own Analytics Rules in Microsoft Sentinel. Analytics Rules should be precise logic to enable
your operations to focus exactly where it needs to focus; and because, capturing data outside of what was
intended is both inefficient and problematic for isolating actual security events.

The example (available from the series’ GitHub repo at: https.//aka.ms/MustLearnKQL):

https://azurecloudai.blog/2021/11/22/must-learn-kql-part-4-search-for-fun-and-profit/?WT.mc_id=m365-0000-rotrent
https://azurecloudai.blog/2021/11/22/must-learn-kql-part-4-search-for-fun-and-profit/?WT.mc_id=m365-0000-rotrent
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/searchoperator?pivots=azuredataexplorer
https://aka.ms/MustLearnKQL

Table
2 Pipe
Command
separation
OfficeActivity
| where TimeGenerated > ago(24h)
2 | where Userld has "rodtrent"
Filter " | where RecordType == "Exchangeltem"
| where Operation == "Send"

| project Userld, ClientlP, OriginatingServer

Results

New search query

Let's break this new Search query down together like was done in Part 3. This one, again, is even a tad bit
simpler than when describing the Search workflow, but as you'll see, it's the where operator that is
sometimes our biggest, most powerful, and best workhorse and pal for tuning efficient results.

1. The first step in our workflow is to query the OfficeActivity table. If you remember, from our
time together in Part 4, we're looking for user activity (in our case the user “rodtrent”) in
Microsoft Office.

2. As per the discussion in Part 3 on workflow, | want to highlight the importance of the pipe
command once again. | don't rehash the importance here. If you missed it, jump to Part 3 to
catch up.

3. In step 3 of the new Search query, I'm filtering how the query engine searches. I'm first telling to
only look at data in the last 24 hours (TimeGenerated), then only looking through a column
called Userld for the string “rodtrent”, then telling the query engine to only capture Exchange
activity from the RecordType data column, and finally pinpointing the search to only Send
operations. So, essentially, I'm looking for any emails that rodtrent sent in the last 24 hours.

» Filtering the data is the key to everything. <= Read that again. Filtering the data that
is returned produces exact, actionable data. It also improves the performance of our
qgueries. Where the search operator may return thousands of rows of data in 15
seconds (or less), by properly filtering the data to return exactly what is necessary
returns just the number of rows of data we asked for which greatly improves the
processing time. Where the search operator may have taken 15 seconds, our new
Search structure query will take 5 seconds or less. The Where operator is the key to
this operation. Learn it. Know it. Keep the Where operator reference page

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://azurecloudai.blog/2021/11/19/must-learn-kql-part-3-workflow/?WT.mc_id=m365-0000-rotrent
https://azurecloudai.blog/2021/11/19/must-learn-kql-part-3-workflow/?WT.mc_id=m365-0000-rotrent

handy: https://docs.microsoft.com/en-us/azure/data-
explorer/kusto/query/whereoperator.

4. Finally, I'm using the project operator to control exactly what is show in the results window. In
this case, | only want to show the user, the user’s IP address, and the server where the email
originated from.

The results?

Time range : Setin query : New alert rule

1 OfficeActivity
where TimeGenerated > ago(24h)

I
| where UserId has "ro '

| where RecordType = changeItem”
I ; n

I

where Operation == "Send"”
p =ct UserId, ClientIP, OriginatingServer

Resulis Chart Columns (@) Group columns

Completed

> - rodtrent@sixmilliondollarman.onmicrosoft.com 40.114.40.132 CH2PROAMEBTO00 (15.20.4200.000)

> . rodtrent@sixmilliondollarman.onmicrosoft.com 40.114.40.132 CH2PROAMEBTO00 (15.20.4200.000)

Search query results

As you can plainly see from the query results, this matches exactly what my query proposed.

EXTRA: We saw in Part 4 with our Search operator, how results from our queries are in named rows and
columns of data. And, you see here in this post, how I'm constantly filtering against known column names
in the tables. Some might wonder how | come up with those schema names. Of course, it helps that | work
with these tables constantly, but | do have a couple secrets to share. First off, as noted in Part 1, | use

the Azure Monitor Logs table reference quite a bit. However, there’s also the Rosetta stone of KQL

operators: getschema

Running a simple...

OfficeActivity
| getschema

...will produce a list of all the named columns of a specific table. The example above displays all the
named columns of the OfficeActivity table. Each of these columns can be used in your where
operator filtering efforts.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://azurecloudai.blog/2021/11/22/must-learn-kql-part-4-search-for-fun-and-profit/?WT.mc_id=m365-0000-rotrent
https://azurecloudai.blog/2021/11/17/must-learn-kql-part-1-tools-and-resources/?WT.mc_id=m365-0000-rotrent
https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-category
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator
https://cda.ms/3jg
https://cda.ms/3jg

Must Learn KQL Part 6: Interface Intimacy

| preface this post by saying this: everything discussed in this post about the User Interface (Ul) can be
done (and should be done, eventually) in the KQL query itself.

When you're just starting with KQL, the Ul can be a blessing. As you get further in your learning and
comfortability with the query language, it can be a crutch - particularly when you need to find something
quickly because of a perceived security threat and view it in a way that's most meaningful. Still,
understanding the Ul's capabilities is important.

In this post, I'll give you a whirlwind tour of the Ul, but again with the assumption that, eventually, every
action it provides I'll cover on how to accomplish it using KQL as we get further and further along in this
series.

The Logs blade exists in almost every Azure service, allowing you to query the activity logs for that service.
For our purposes for Microsoft Sentinel, since all those services’ (and more) logs are consolidated in the
Log Analytics workspace for Microsoft Sentinel, we get to use the Ul to query everything. It can be a bit of
a power rush.

For those that already have deep-level experience with the Logs Ul in Azure services, this may not be your
favorite part of this series, but you also may learn something you missed or that's been updated recently,
so make sure not to overlook anything important. And, please, please, PLEASE - if you're an expert in the
Ul and with KQL, pass this along to someone who needs it.

Like everything in Azure, there's updates and enhancements constantly, so I'll try to keep this part of the
series up-to-date continually. My youngest son is the epitome of FOMO (fear of missing out) and | feel like
him sometimes when I've been away from the Azure portal or the Microsoft Sentinel console for even a
day. Every day can be a new adventure. As a customer, you might think, or even become frustrated, that
it's hard to keep up with all the changes going on in the Azure services and other products. But, believe
me, those of us that work at Microsoft are faced with the exact same scenario and the same difficulties in
keeping up-to-date. So, we can help each other in this respect. See something in this part of the series
that's slightly off or maybe improved? Or, maybe I've chosen not to cover an area or feature that you need
more knowledge about. Let me know and I'll get it updated toot sweet.

HANDS-ON: If you'd like to follow along yourself with the Ul areas and descriptions in this post (instead of
just reading through them in the text), use the KQL Playground that is referenced as a Practice
Environment in the resources list of Part 1.

https://aka.ms/LADemo

I'll start this part of the series talking about those areas in the Ul that are most important to our efforts in
learning how to manipulate the KQL query data, and then follow up with the rest of the interface in

the Extras section below, so you get the full intimate affair. And don't forget to come back for Part 7 for
the Schema Talk (see the TOC) where I'll finish up covering the Ul with those areas of the Ul that pertain to
working with the tables.

OK...so let's dig in...

Filtering through the table elements

To focus on a specific column, select the ellipses next to a column heading and choose the Filter icon, then
select values to adjust the results display.

rodtrenti@smmilbondoll.. A8

SOOMILLMSNEOLLARMAN 0

£ Search resources, services, and docs (G+/)

@ Microsoft Sentinel | Logs

& Mow Query 1%
General 8 PodAnseSentinelVorkspace Time range : Last 24 hours Save Mew alert rule
L —— Funciions SecurityEvent
'] ré EVeAtID == |

*® Logs

Group by: Solufion

w chorm thee result set.

Account Type Computer

Community

Configuration

* Alert Management

* Antimalware Assessment
¥ Azure Monitor for Vs

* AzureSecurityOfThings

¥ Change Tracking

Filtering the columns

The example query in the above and following images is located here: https://aka.ms/MustLearnKQL

Sorting results

To sort the results by a specific column, such as timestamp, click the column title. One click sorts in
ascending order while a second click will sort in descending. An arrow will display in the column next to
the column title to show which direction the results are sorted.

https://aka.ms/MustLearnKQL
https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/filternow.png?ssl=1

Microsoft Azure Zearch resources, services, and docs (G+/)

.m Microsoft Sentinel | Logs

Feedback
Time range : Last 24 hours Save Mew abert rule Expoet

CQueries Functions urityEvent

VEALID ==

News &
Filter

Threat managemant
Collapse all
« Favorites
Humting B AzureActivity
3 HuntingBaokm

B notebos
B Irunefis

B intanel emphancelig
Threal irtelhgenc B Intun GAUNSCOM DWR... SCOMLnagau.lab Microsaft-Windows-Secur

B IntuneOperationalLogs

Content management 1222021, W0:58:05.097 AM MAGALNSCOM DWE... SCOMLnagsu lab Microsalt-Windows- Securit

B Laouerylogs

hub (Preview) B o 1222021, 10:58:05.093 AM HAGALRSCOM_DWR... & SCOM L. kil Microsalt Windanws Securit

| 1223020, Me56:05.053 AM HAGALRSCOM DWHR... SCOMnaga. lab Microsoft Windows
12722021, 10:58:05.050 AM MAGALNSCOM DWR... SCOMLnagau lab Microsoft-Windows-
1222021, W:58:05.047 AM HAGALNSOOM DWER . SCOMLnagau lab Microsaft-Windows-5
1222021, 10:58:05.043 AM MAGALNSCOM_DWR... SCOM LG lab Microsolt-Windows
1222020, 05805027 AM HAGALRSCOM_DWHR... - SCOMLnagas.lab Microsolt Windows
12/2/2021. 10:58:05.023 AM MAGALNSCOM_DWE... SCOMLNaga. Ll Microsaft- Windows

b Alert Management 12220210, :5805.017 AM HAGALRSCOM_DWR... SCOMLNaga. lab Microsalt-Windows

Automation

b Antimabware Assessment 12/2/2021, WESE04.983 AM MAGALNSCOM DWHR...

¥ Azure Maonitor for Vs R2/2021, 10-58:04.950 AM

b AzureSecurityOfThings

¥ Change Tracking

Grouping results

To group the results, first toggle the ellipses as you did in Filtering the columns, then choose the
hamburger menu icon to expose the column'’s grouping option.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/sorting.png?ssl=1

SOMILLIONDOLLARMAN (5001

. Microsoft Sentinel | Logs

Time range : Last 24 hours

SecurityEvent
ere EventlD ==

4 Favorites

» B AzureActivity

B Huntinglc
Hunting

B Mote

B i showing the fir 1 sults an how b narmow doen the result set.

H Intun

@ Entity behavior B Intun [TimeGenersted [Locsl Time] o AccourType Computer
v Threat intellige:

N

r Ew shirewall
b Alert Management
* Antimalware Assessmant
k Azure Maonitor for VMs
* AzureSecurityOfThings

+ Change Tracking

Grouping columns

Selecting columns to display

To add and remove a column that is displayed select the Columns pane on the right-hand side of the
results display.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/groupingnow.png?ssl=1

Y - —— —| G+ pn [0 A lmtll!l-'ll'li':'-lI!IT'II"lm”... a
SOMILLIGHOOLLARMAN (51041

. Microsoft Sentinel | Logs

Mew Query 1*
General # RodAnmeSentinelWorkspace Time range : Last 24 hours Save Mew alest rule

SecurityEvent

Table Cuernes Functions
ables mErie unchions ere EventID ==

an how to narrow down the result set.

mjim]

100000000

* Alert Management

* Antimalware Assessmant

ol

¥ Azure Monitor for Vs

* AzureSecurityOfThings

Jisplay fime [LITC-D
¥ Change Tracking ’

You will notice when you work with this Ul feature, there are several columns that are omitted from the
results display. There’s some intelligence built in that looks at the table data and only shows results that it
deems pertinent to the operation - in our case, that operation is security monitoring. It also locates
columns that contain no data and omits these from the display. All these measures are intended functions
to help build efficiency and eliminate unnecessary data, but also to improve query results performance.
But, using this feature (and actual KQL operators like project we'll talk about later on), you can use the Ul
to pick and choose what to review.

Select a time range

To add a custom time range, select the Time range option.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/newcolumns.png?ssl=1

= Microsoft Azure

@ Microsoft Sentinel | Logs

New Query 1*

#® RodficureSentinelWorkspace

*# Logs

& MNews & guides

Filter Group by Solution s

Threat managemant

Collapse all

4 Favorites
B An
¢ [H HuntingBo
b H I
¢ B
b B b

& Community

Configuration

» B WindowsFerewall
b Alert Management
* Antimalware Assassmant
¥ Azure Monitor for ViMs
¥ AzureSacurityOfThings

¥ Change Tracking

£ Sparch respurces, senaces, snd does (G+)

Last 4 hours
Last 12 hioirs
+ Last 24 hours

Lasct 48 houwrs

12/2/2021, 0854077 AM
12/2/2021, 0854080 AM
12/2/2021, T:08:54.087 AM
12/2/2021, TH08:54.907 AM
12/2/2021, 10854130 AM

/22020, TEOCIT. 72T AM

[2/2021, TET124.350 AM

MAGALNSCOM DWiResd
MAGALNSCOM_DWhead
MAGAUNSCOM_DWiead
MAGALNSCOM DWhRead
MAGALNSCOM_DWResd
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
MAGALRSCOM_DWhead
MAGALNSCOM DWiRead

MAGALRSCOM DWRead

Cuenes Oy explorer

Pin to dashboard Foamat query

Group columns

19 7 30000+ reconds ¥

SCoMLRagaulab
SCOMLnagau lab
SCOMLnagaulab
SCOMLnagaulab
SCOMILnagau lab
SCOM1nagau lab
SOOM1nagaulab
SCOMILnagau lab
SO0MLnagau.lab
SCOMLnagaulab

SCOM1nagau lab

items per page 1 - 50 of 30000 #ems

Incidentally, 24 hours is the default for Microsoft Sentinel. Each time you enter the console or attempt to
work with KQL in the Logs blade, it will default to this time value. This is based on security principles that a
SOC or security teams should be focused on the most current data. Responsibilities, tasks, policies, and
procedures of a well-tuned security team should ensure that all current events are monitored and
managed in some way at the end of each day so that they are ready for the next round of events. That's
not always the case, of course, but that's one reason why Microsoft Sentinel always defaults to 24 hours.

Charts

To add a chart as a visual format you can select the CHART option just above the results window at the
bottom of the Ul. On the right-hand side you have many options for manipulating the visual aspect of the

data.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/timerange.png?ssl=1

Y - —— —| G+ a1 B 0 A l(ﬂt'l'!l-'ll'li':'-llfIT'II||Im||... a
SOMILLIGMOOLLARMAN (5101

@ Microsoft Sentinel | Logs

* Mew Query 1*
General # RodAnmeSentinelWorkspaos Time range : Last 24 hours Save Mew alert rule
SecurityEvent

| whers EventID ==

Tables Cuernes Functions

P

4 Favorites

¥ [Azu y Results l Chart

Community TemeGenerated
Aggreqation
Configuratio Apgregation
Sum
» Alert Management
* Antimalware Assassment

¥ Azure Monitor for Vs

* AzureSecurityOfThings

O 695ms | Display time (UTC-0400) 100 records
 Changs Tracking " ’ I = \"H———-"'-

Generate Charts

Note that charting is dependent on tabular data. I'll talk about this when we get to the summarize, render,
and bin operators in this series. (See the TOC)

EXTRA

In the previous section, I've discussed those areas in the Ul that are going to help you manipulate the
results. Again, while those are important areas, I'll show how to accomplish each of those using actual KQL
guery operators, so you don't have to rely on the Ul.

You might notice | didn't spend any time talking about the Tables, Queries, and Functions areas in the Logs
blade. I'll come back to those in Part 7 when | talk about the schema. (See the TOC)

But before closing out this part of the series, | do want to also highlight some other cool areas of the Ul
that you might enjoy and have fun with.

Save search queries

You can save your queries to Query Packs and then look them up and use them later. For more
information on Query Packs, see: Query packs in Azure Monitor Logs and How to Save an Azure Sentinel
Query to a Custom Query Pack

https://aka.ms/MustLearnKQL
https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/query-packs
https://azurecloudai.blog/2021/07/19/how-to-save-an-azure-sentinel-query-to-a-custom-query-pack/
https://azurecloudai.blog/2021/07/19/how-to-save-an-azure-sentinel-query-to-a-custom-query-pack/
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/newchart2.png?ssl=1

Microsoft Azure

@ Microsoft Sentinel | Logs

Collapue 2l

4 Favorites

Threat intelligence

Content management

& Community

Configuration

wall
¢ Alert Management
£ Automation
¥ Antimalware Asseszment
3 Sott
* Azure Monitor for Vs
¢ AnureSecurityOfThings

* Change Tracking

Share Queries!

Sharing your fabulous query creations is an important capability for several reasons and not just for an

Sparch resources, senaces, and docs (¥

Results

Chant Lo

Completed. wineg parntial results

., THO8:54.037 AM
12/272021, TEOB:54.070 AM
122720, 1 :54.077 AM
12/27303, Ti08:54.080 AM
12/2/20H, TROB:54.08T AM
12/2/202, TEOR:54.907 AM
12/2730H, ThiR:54.130 AM

L, TROSAT.T2T AM

12/2/2021, TETE24.3TT AM
12/2/207,

1272 /3021, TETEZ 4,390 AM

Save
Save

a5 funchon

NAGALMSCOM_ D Hesd
NAGALNSCOM DWRea

MNAGALNSCOM DWRead
MAGALNSCOM DV R
MAGAUNSCOM_DWhead
MNAGALNSCOM DWRead

NAGALRSCOM DWW Read

WAGALMSCOM DiRead
NAGALNSCOM DVWHRead

MAGALNSCO M D Head

4 4 page

e alert nile

¥

Display time QUTC

ego boost or pat on the back when bragging to friends and colleagues.

Save as query

0 selected

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/saveit.png?ssl=1

Microsoft Azure £ search resources, services, and docs (G+/] 1 a o Pyl rodtrentisemilondell.
: . : g - o SOMILLOMDOLLARMAN (SO0 0

@ Microsoft Sentinel | Logs

* Mew Query 1*
General & RodAnmeSentinelWorkspaos Time range : Last 24 hours Save Hew alert rule
SecurityEvent

| where EventID ==

Tables Cuernies Functions

Accourt Type

* Alert Management
* Antimalware Assessment
¥ Azure Maonitor for VMs

* AzureSecurityOfThings
Wsglay fime (UTC-0ED0)

¥ Change Tracking

There are three sharing options:

1. Copy link to query: Since the Azure portal and Microsoft Sentinel console are web-based, you
can share the direct URL to the query you created by pasting it somewhere (email, Teams chat
or channel, etc.). When you share the link and someone with proper access clicks on it, they are
taken directly to the Logs blade and the query is run, so they can review the same results. This
is an awesome team activity where you can get an extra set of eyeballs on a potential situation.

2. Copy query text: This function just copies the query itself so you can send that somewhere (to
a team member, to a GitHub repo, etc.)

3. Copy results: Right now, this function literally does the exact same thing as the Copy link to
query option. So, we'll put a pin here for when this changes in the future.

And, by the way, you can also submit your KQL creations to the official GitHub repository for Microsoft
Sentinel. See Add in your new or updated contributions to GitHub for steps on how to accomplish
that.

Format query

A super-cool, super-useful tool is the Format button in the Ul. This button takes a badly formatted query
and reformats it so it a) works, or b) is in a more uniform, more readable format.

https://github.com/Azure/Azure-Sentinel#contributing
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/05/newshare.png?ssl=1

@ Microsoft Sentinel | Logs »

B b Quary 1
® RodhnmoSontinelborkspace a Shaem Fiew sbert sl

Tabe Cuesier Panciioes 1 o kL == TimeGenerated » sgni ¥d]

Fileer Gooup by Sobation ~

Collagee al

= Faworites

» 8 rumactaty

» I Nermrgostmart

Tirrm cange : Sat in query

Eventieveliame ==
(CPC-roduent- 62 Tlmetansrated > agni 1d}
. {3 by Computer
SCOM Lasguu sk . —

“Winduwalessent

SIRENT-CEABES e thifrsei Covp i asc. ..

SO NASEAST.

¥ 1 updsteSeramary

rAw

¥ Alert Managemant

b Antimabware Adiessmest
¥ Asurs Monitor for Vs

* AzureSecurityOrThings

¥ Change Tracking

As | noted in Part 3 about Workflow, because of the power of the pipe (|) command separator, a KQL
guery can be a single line of code. But that's a bit useless if you want to be able to determine what the
query's intent is or need to debug it. This option turns it into a better format.

Queries Galore

In addition to all the awesome KQL query goodness available from all over the Internet, there's a slew of

example KQL queries available to access in the Logs blade itself. Just tap or click the Queries button to
gain access.

@ Microsoft Sentinel | Logs

Mew Chusry 10
EnchneSect neWodpace

Tables Quenes Functions

O veduenn i

SCOMLragaulsh
Fapones time tresd Bt count trand

Wirdowa et Sent

Chart iyl chasafion o T bl 17 Soun. et Wil o e e il .

MIHINT -Gl SnorBamerica.cor. miasat ..

SMCIAWSAASK.

Caboashats i o
oo

Top 10 cousiries by raffic Page views frend

chart thes e, o roepst froem ther o 90 Chi U g v e, i e
i, .

Exporting Queries

The Export option in the Ul gives you the ability to export the query results in a number of ways.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/format.png?ssl=1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/queriesgalore.png?ssl=1

You can export all data to a csv, export only the data in the displayed results, generate an M query for use
in creating a Power Bl dashboard, and export and open immediately in Microsoft Excel.

Quernies Query explyer

Time range : Last 24 hours & Share Mew alert nge Export Pin to dashboard

Event . Export to CSV - all columns

‘2 EventLevelName == "Ei

there TimeGenerated > ago(2ed) Export to CSV - displayed columns
mmarize count() by Computer

Export to Power Bl (M query)

Open in Excel

New Alert Rule

You can create rules for either Azure Monitor or Microsoft Sentinel directly from the Logs Ul. This is an
awesome feature that allows you to create and tune your query until it's perfect and then begin the steps
to turn it into a rule to automatically analyze security for your environment. We're not quite at that step in
this series, so we'll come back to this feature in Part 21. (See the TOC)

Time range : Setin query Mew alert rule Export
Create Azure Monitor alert h

~e TimeGenerated > ago(26 Create Azure Sentinel alert

summarize count(} by Computer

Pin to Dashboard or Workbook

Pin to Dashboard is an interesting feature in that you can take the query results that are formatted as a
chart and pin the visualization directly to the standard Azure portal dashboard. This dashboard can be
your own private collection of visualizations or a collection that is shared among your teammates or even
supplied so your manager has purview into operations.

https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/exportqueries.png?ssl=1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/newalertrule.png?ssl=1

Pin to dashboard

Existing Create new
Type @
Private

Shared

Dashboard

i I
Queries Query explorer My Dashboard

Pinto

Azure dashboard

et Send to workbook also filtering
of a new Cloud Shell instance

vityStatusValue

® 00:00.6 {7 1 records

ResourceGroup

CLOUD-SHELL-STORAGE-EAS...

Pin do Azure Dashboard

An additional option here is the ability to send the query to a Workbook. This is useful when you need to
use the Logs blade to develop the query and instead of copying/pasting into an existing Workbook that

you're currently developing, you can just insert it into the Workbook. Of course, you can create Workbooks
from here using the new queries, too.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/pinttodashboard.png?ssl=1

Send to Workbook

Mew workbook Existing workbook
X il

Cueries Cuery explorer
Finto Format query
Azure dashboard

ltems to add

of a nmew Cloud Shell instance

vityStatusValue o)
« @ Logs Query - AzureAdtivity /the table | where ResourceGroup startswith “CLO...

Send to Workbook

® 00:006 [1records ¥

CLOUD-SHELL-STORAGE-EAS... rodtrent@sbmnillio

Logs Query - AzureActivity /the table | where ResourceGroup startswith “CLO..

Like? Dyslike? Have a suggestion?

ke? Have a suggestion?

Send to a Workbook

Settings

I'm not going to dig into each option, but the Settings icon contains configuration adjustments including
things like how double-clicking works, if you want to see tables that contain no data, how many rows per
page should display by default in the results window, and other things.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/sendtoworkbook.png?ssl=1

Settings

Date & Time

Local Time

Tables pane
Queries Query explorer D

3 table name
Pin to dashboard Format query Run preview query
Adds the table name to the query editor

Add to exasting tab

Load each query to a new tab

History Queries

Log Analytics query history i1s saved for 30 days globally.
Query history may be cleared using the “clear history® button.

In-Ul Reference

Lastly, to round out this intimate review of the Logs Ul, there’s a very good, very solid collection of
references built into the Ul. Some of those I've already supplied as references in Part 1, but, like everything
in Azure, this is also updated continually. So, keep an eye out here for updates.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/settings.png?ssl=1

Feedback i Query explorer

Online course
Language reference
What's new

Using Log Analytics

Getting started with Logs

Community Forum

) Group columns e
Community Git repo

® 00:006 {7| Srecords ¥

Tabs

To help keep you organized, much like a web browser the Ul also supports tabs.

M Microsoft Sentinel | Logs =
Selacte space: "rod - workspace

ntinelwe
‘. "“m’!.

Ga | k Add a new tab
N *#® RodAzureSentinelWorkspace Time range : |
#® Oveni I Duplicate
enaew Tables Queries Functions - T"“N"Mtwlty =

where Opel:at:ionﬂar Close
where ActivityStail

0 Close all but this

logs

& News & guides
Filter Group by: Solution
Threat management

Collapse all
™ Incidents -

Tabbing

This is awesome functionality to allow you to work on different queries or different datasets in each tab. If
you right-click on each tab, there's a context menu pop-up that allows you manage the tabs in various
ways including duplicating the current query in a new tab.

Keyboarding Shortcuts

If you're a die-hard keyboarding fan like myself, rest easy knowing that you can help speed up your query
development using a couple key combinations. It's also for us lazy people who can't suffer the time to lift
our hands from the keyboard to locate the mouse and click on one of its buttons.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/inappreference.png?ssl=1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/tabs-1.png?ssl=1

me range : Last 24 hours

Ivity
e OperationName ==
e ActivityStatus ==

‘ +

Time range : Last 24 hours Share New alert rule

AzureActivity
where OperationName ==
= I\ \ .

C-cway
project-keep
project-rename

7 project-reorder

Keyboard shortcuts

Shift + Enter causes the query to run. Ctrl + Enter starts a new command line, complete with the
command (pipe (|)) character.

Intellisense for the Win

Much like how addressing an email works, the Logs Ul will try everything it can to use autocomplete to try
and figure out what it is you want to accomplish. Just start typing in the query area and the applicable
options will display in a list.

+® RodAzureSentinelWorkspace Time range : Last 24 hours : Share

Tables Queries Functions =
ureScoreControls

urescores
o : urityAlert
urityBaseline
Filter Group by: Solution urityBaselineSummary
urityDetection
urityEvent
Collapse all urityIncident
urityToTRawEvent
4 Favorites urityNestedRecommendation
urityRecommendation
» B AzureActivity 2 urityRegulatoryCompliance
» H HuntingBookmark e
» B IntuneAuditlogs

» B IntuneDeviceComplianceOrg

i Mo results found from the last 24 hours

But wait...there's more...

Next, in Part 7 (see the TOC), there’s a bit more of the Ul to talk about. But that deserves its own part since
we'll be talking in relation to working with the tables and the schema.

https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/intellisense.png?ssl=1

Must Learn KQL Part 7: Schema Talk

Before jumping directly into talking through some common KQL operators and providing you example
queries for hands-on learning (see the TOC) in the next part of this series, there's some lingering discussion
from the last post around the Ul, but also how this relates to table schema. | wanted to keep this
information separate from the rest and in its own area because it will help you determine where things
exist in the tables and how to better pinpoint the data. You saw in Part 4 that it's easy to find anything in
the data. But as you start getting closer and closer to taking the knowledge to develop your very own
Analytics Rules for Microsoft Sentinel, you want to take the learning from Part 5 and go just a tad bit
further. This where an understanding of the schema becomes important.

The table schema is important. As with any data storage function or service, data is collected and stored
- most times appropriately - in organized columns. | noted in Part 5 about the getschema operator for KQL
that produces the list of all columns and their types.

In case you missed it or you forgot...

Example:

OfficeActivity
| getschema

Sample results:

https://aka.ms/MustLearnKQL
https://azurecloudai.blog/2021/12/02/must-learn-kql-part-6-interface-intimacy/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator

Time range : Last 24 hours New alert rule Pin to dashboard Format query

[OfficeActivity]
2 | getschema

Results Chart Columns Group columns
Completed. Showing results from the last 24 hours. @ 00:00.7 7] 132 records ¥
. B N — . e\

Tenantid System. String

~

Application System.String
UserDomain System.String
UserAgent System.String
RecordType System.String
TimeGenerated System.DateTime
Operation System.String
Organizationid System.String
Organizationid System.String
System.String
System String

System.String i /

14 4 page 1 of3 P items per page 1 - 50 of 132 items

Results from getschema

As you can see in the results, getschema shows a lot of great information. It shows the actual column
names that are important to know for what types of information can be found, but also note the DataType
and ColumnType results. These tell us how to query the data - or, rather, the approach we need to take
(the type of KQL operator) to query, extract, and manipulate the data.

Using just the information displayed in the screenshot example, | can see that | can use Part 5's
knowledge to show regular Exchange users that sent emails. The following example shows that.

OfficeActivity

| where UserType == "Regular”

| where OfficeWorkload == "Exchange"
| where Operation == "Send"

| project Userld, UserDomain

Query example is located at: https.//github.com/rod-
trent/MustLearnKQL/blob/main/Examples/Part7OfficeActivityExample.txt

Note that not everything is as neatly stored and defined as the OfficeActivity table in the screenshot. | said
earlier that most times data is stored neatly and orderly. There are exceptions and you need to be aware

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator
https://github.com/rod-trent/MustLearnKQL/blob/main/Examples/Part7OfficeActivityExample.txt
https://github.com/rod-trent/MustLearnKQL/blob/main/Examples/Part7OfficeActivityExample.txt
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/datatype.png?ssl=1

of these. In these cases, you'll need to utilize some parsing functions of KQL to extract the data yourself.
But let’s not focus on that here in this post. | promise, I'll dig into that later in the series (see the TOC) just
before creating your first Analytics Rule.

But fortunately, most times data is stored neatly and orderly. This is where the Data Connectors come into
play in Microsoft Sentinel. The parsing is done for you when an actual Data Connector is in play. The
“parser” is part of the Data Connector or the Sentinel Solution. For those situations where an official Data
Connector does not exist, you may be called on to create your own parser. Again, I'll cover this later in this
series, but | do want to call this out, as it's important. So, for your efforts as you begin building your KQL
knowledge, stick with the tables that are part of a Data Connector, otherwise you'll bump off into
unknown territory that can get miry fast.

OK...with this knowledge firmly in-hand, let's jump back to the Ul to talk about some areas in the console
that help shortcut some of this activity.

Column Types

As shown in the screenshot example, there are various KQL column types. Again, knowing these date
column types will alter your approach for querying specific columns. | don’t want to spend a lot of time
here on this so as to not start the varying levels of confusion. But I'll include this here so | can refer to it
later on in the series.

The KQL column types are...

« Basic
o int, long (numerical types)
o bool: true, false (logical operators)
o string: “example”, ‘example’
e Time
« datetime: datetime(2016-11-20 22:30:15.4), now(), ago(4d)
o timespan: 2d, 20m, time(1.13:20:05.10), 100ms
o Complex

o dynamic: JSON format

For anyone that's worked with any query language or data format before, these are not uncommon or
new. As | talked about in Part 2, KQL - the query language - was not designed to be difficult nor
revolutionary. The revolutionary part is how it utilizes the power of the cloud (Azure) to accomplish sifting
through mass seas of data quickly and efficiently. No, KQL - the query language - takes the best pieces of
a lot of existing query languages. For example, anyone that's worked with SQL Server, will have an easy
time with KQL.

Back to the Ul

The Ul has an area that aids in organizing and customizing the table/schema view, but it also has
capabilities to enable easier and quicker access to KQL query creation. In this post, I'm not going to focus
heavily on areas 2-4. You should be able to figure out how to click through and use most of those on your

https://aka.ms/MustLearnKQL

own. And, while I'll provide a quick overview of all the areas just now, I'll circle back and focus on the
Tables area. As you're getting started learning KQL, this is the important area that will save you a lot of
time learning to create your own queries.

* New Query 1+ eedback Queries

.adm‘mmnl pace Time range : Last 7 days E] save 1€ Share New alert rule Expc Pin to dashboard

Filter Group Dy: Solution v

Collapse all
» Favorites

¢ Alert Management
» Antimalware Assessment Compilated
» Azure Monitor for VMs

¢ AzureSecurityOfThings i No query was selected
Type a query and place the cursor anywhere in the query.

" .
Change Tracking A query can contain line breaks, but no blank lines.

» LogManagement

» Microsoft Sentinel

» Microsoft Sentinel UEBA

¢ Network Performance Monitor
» Security and Audit

+ SecurityCenterFree

¢ WindowsFirewall

» Custom Logs

Ul Overview:

1. This is the Tables list. This is where you can find all the available tables for which you can create
queries against. We'll focus on this area just below.

2. This is the Queries list. This tab area contains a slew of pre-made KQL queries that you can
spend hours and days executing, reverse engineering, and all other matters of query learning
importance. These are separated by category types like Applications, Audit, Azure Monitor,
Azure Resources, Containers, Databases, Desktop Analytics, IT & Management Tools, Network,
Security, Virtual Machines, Windows Virtual Desktop, Workloads, and Others.

3. This is the Functions list. A Function is like a stored procedure in SQL, except in our case the query
code is in KQL. This is a hugely useful component of KQL. I'll cover this in-depth later in the
series (see the TOC). Did you know that the Watchlist feature of Microsoft Sentinel relies heavily
on a Function? If you access the Function tab in the Ul, you'll see the _GetWatchlist function.

4. The Filter tab. The Filter tab is absolutely awesome and delivers another shortcut method of
developing your KQL queries. After running a query the Filter tab will contain a list of empty
data columns that you can select to filter out of the query results. Once a column is selected
and applied, you can see in the screenshot that the query is updated automatically with
the where operator to use as the filter mechanism and then the query is rerun.

The isempty() function is used, which, in itself is a powerful tool that we'll talk about later in this
series.

https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/isemptyfunction
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/schemastuff.png?ssl=1

Feedback ST Cery explorer

Last 24 hows " e ew alert nule Finto dashboard Format query

I showing top 10 values for each i Feschack

~ AADGroupld 1 b Time range : Last 24 hours Hew abert rule Export Pin 1 clashibsosnd
B (emgny} 159

~ ActoripAddress 1 -
.) - Tire range - Last 24 hours
[mmpity

activity
pp—— rIpAddrecs)
haowirsg iop ¢ sempty | pé .

~ AADGroupdd 1

Group columns

last 24 heowars.

Malemsboceised o600 71 -AfaS-BSB6-e6a8190d . TOd4640-TidT-48a5-|
a Malifemshcocessed 7004600 77 -48a5-B5B6-06a8199d T0d4600-Tid7-48a5-|

2720 d b 2 .S 50 Mailmemshccessed fT0d4600- 7RIT 4825 -BSBE-eHaS199d frodasan-Tid7-48a5
2 = Exchangeltemian. Move FoDweletedit. Frocando- M7 -a8a -B586-efa55d Trodasan- T - 488
[xchangettem Maiinemstocessed 704600 TRIT ARaS RSH6 o6 THOdABA0 THdT - 48a5

50 Mailtemshocessed F7004Bd0- 7607 -4Ba5-B5B6-efaB156d . 1T0d48A0-THd7-48a5-
 Applcaticnld 1

- .) k) msiitemssccesed Frodando- Fid7T-atad BaB6-etas9od Trodandn- rid7-a8a%

e hangettim MoveToleletedl,. FTOA6A0- TRIT ARaS HSH6 w6aI190d_ TROS4GS0 THd7- 48a5 ASHG
Exchangettom MailiomsAccossod FT0d46d0- T -48a5-B5BE whadifod _ (T0MASA0-TId7-48a5

s Malimemshocessed 704600 TRAT-48a5 -BSBE-C6aS199d_ 1044500 Tid7-48a5-|

Filter tab

Schema Area Focus

| noted in Part 6 that everything that can be done in the Ul we should eventually accomplish in the KQL
query itself. That's still the case here, but the Ul provides some neat shortcuts that shouldn't be
overlooked.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/FilterTab.png?ssl=1

® New Query 1*

L RodAzureSentinelWorkspace Time range : Last 7 days Save |5 Share -|— Mg

Tables T Functions 1 Type your query here or click one of the queries to start

o

Filter Group by: Solution v~

Collapse all

4 Favorites .

b B AzureActivity
» B HuntingBookmark :: OfficeActivity %
» B IntuneAuditlogs

Use in editor

» B IntuneDeviceComplianceOrg

» [H IntuneDevices
Description

Audit logs for Office 365 tenants collected by Azure Sentinel. Including
Exchange, SharePoint and Teams logs.

» [E IntuneOperationallogs

vl gos

4. H OfficeActivity

t AADGroupld {string)

t AADTarget {string)

t Actor (string)

t ActorContextld (string)

t ActorlpAddress {string)

t AddOnGuid (string)
t AddonMName (string)
t AddOnType (string)
t Affectedltems (string)

t AppDistributionMode (string)

\ t Appld (string)

1. First off, every Table in the list can be expanded to show the schema underneath. So, instead of
always resorting to the getschema_operator, you can expand the Table while you're creating
your queries to have a quick-glance reference list of what you can query against.

Secondly, if you hover your mouse cursor over a Table name, a new pop-up window displays
that provides even more query shortcut value. Also of importance, notice that the pop-up will
display the description of the table.

If you click the Use in editor option, the Table name will automatically be placed in the query
window so you can start querying against the table.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/getschemaoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/schemalist-1.png?ssl=1

4. The Useful links option links directly to the Azure Monitor Logs table reference that | provided
as a resource in Part 1.

5. And, finally, the most excellent, super-cool shortcut is the capability to click and look at sample
results from the table itself. Clicking on this will produce its own window similar to the
following:

s== OfficeActivity ¥*

-
Use in editor

Description
Audit logs for Office 365 tenants collected by Azure Sentinel. Including Exchange, SharePoint and Teams logs.

Tags

Useful links

Preview Data

Tenantid TimeGenerated [Local Time] Operation Organizationid
eT3fcae6-0260-4da5-9d56-f9e36... 12/7/2021, 7:56:04.000 AM MailltemsAcc... f70d46d0-7fd7-48a5-8586-e6a81...
e73fcae6-0260-4da5-9d56-f9e36... 12/7/2021, 7:56:04.000 AM MailltemsAcc... f70d46d0-7fd7-48a5-8586-e6a81...
e73fcae6-0260-4da5-9d56-f9e36... 1272021, 7:56:04.000 AM MailltemsAcc... frod46d0-7fd7-48a5-8586-e6a81... frod4e
e73fcae6-0260-4da5-9d56-fe36... 12/7/2021, 7:56:04.000 AM MailltemsAcc... f70d46d0-7fd7-48a5-8586-e6a81... fr0d46
eT3fcae6-0260-4da5-9d56-f9e36... 12/7/2021, 7:56:04.000 AM MailltemsAcc... f70d46d0-7fd7-48a5-8586-e6a81.. frod46
e73fcae6-0260-4da5-9d56-f9e36... 12/7/2021, 7:56:04.000 AM MailltemsAcc... f70d46d0-7id7-48a5-8586-e6a81... f7od46
e73fcae6-0260-4da5-9d56-f0el6... 12/7/2021, 7:56:04.000 AM MailltemsAcc... fr0d46d0-7id7-48a5-8586-e6a81... frod46
e73fcae6-0260-4da5-9d56-f0e36... : 12/7/2021, 7:56:04.000 AM MailltemsAcc... f70d46d0-7d7-48a5-8586-e6a81... f70d46
e73fcae6-0260-4da5-9d56-f9%e36... 12/7/2021, 7:56:04.000 AM MailltemsAcc... f70d46d0-7d7-48a5-8586-e6a81... frodae

e73fcae6-0260-4da5-9d56-f0e36... 12/7/2021. 7:56:04.000 AM MailltemsAcc... f70d46d0-7d7-48a5-8586-e6a81... frod46
4 Page 1 of1 » M] items per page 1-10of 10 items

Data Sampling

Incidentally, this most excellent, super-cool shortcut is actually a KQL query itself that uses the take
operator that I'll cover later in the series. In fact, it's a take 10 like the following;:

OfficeActivity
| take 10

This tells the query engine to display a random set of 10 records as a data sample. Because it's random,
every time it runs different data will display.

OK, now that we have all the concepts and Ul functionality finally out of the way, it's time to start building
queries using the most common KQL operators. From this point on in the series, I'll supply a KQL example
based on an operator you can expect to use and see constantly in Microsoft Sentinel and our other
security platform services. You should make it your intent to make use of the public KQL Playground |

https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-category
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/takeoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/takeoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/datasample.png?ssl=1

supplied in the Part 1 resources, or your own environment, to get hands-on with each operator | talk
about.

You'll see as | go along, I'll take a simple query and start to build on it with each new part in this series.
We'll begin simply and end up with an interesting, but more complex query than what we started with.

Must Learn KQL Part 8: The Where Operator

Hands-on Recommendations

Before jumping directly into coverage of the first KQL operator, | want to extend some recommendations
on how to proceed to ensure you get the most out of the hands-on opportunities through the remainder
of this series.

In each new part of this series, I'll talk about a specific KQL operator, command, or concept and supply
example queries that you can use to get hands-on experience. The examples will be available here in the
text, but also in the Examples folder of the GitHub repository for this series
(https://aka.ms/MustLearnkKQL).

Recommendation 1: | know it will be tempting to just copy, paste, and run my query examples. But do
yourself a favor and type them out instead. Use the blog page, or the book, as a side reference, and type
out the queries character-by-character and line-by-line. I'm a big believer in learning by doing. Typing the
queries out will solidify your new knowledge.

Recommendation 2: Consider using the KQL Playground (https://aka.ms/LADemo) from the Part 1
resources as your learning environment when typing out the queries. The KQL Playground contains
several data connections that you may not have in your own environment. The examples that | provide
will have been tested to work and to show results. There's nothing more frustrating than being given an
example and there are no results for your effort. You'll immediately start to think you did something
wrong or that the query itself is bad. So, please, if possible, use the KQL Playground.

With that, let's jump into the first KQL operator...

Where Operator

Bear with me (and forgive me) while | repeat myself. In Part 5: Turn Search into Workflow, | said the
following...

Filtering the data is the key to everything. <= Read that again. Filtering the data that is
returned produces exact, actionable data. It also improves the performance of our
queries. Where the search operator may return thousands of rows of data in 15 seconds
(or less), by properly filtering the data to return exactly what is necessary returns just the
number of rows of data we asked for which greatly improves the processing time. Where
the search operator may have taken 15 seconds, our new Search structure query will take
5 seconds or less. The Where operator is the key to this operation. Learn it. Know it. Keep

https://aka.ms/MustLearnKQL
https://aka.ms/LADemo

the Where operator reference page handy: https://docs.microsoft.com/en-us/azure/data-
explorer/kusto/query/whereoperator.

Rod Trent, circa Part 5 of the Must Learn KQL series

That still holds true. So, based on that, would you agree with me that that makes this Part 8 one of the
most important in the series? You betcha.

The syntax for the where operator will always be the same. Using our knowledge from Part 3 on workflow,
you know that the flow of the query needs to follow a logical path. We need to tell the query engine the
table we want to query against, then we need to tell it how to filter that data.

Where operator syntax:

TableName
| where predicate

Allowable predicates:

« String predicates: ==, has, contains, startswith, endswith, matches regex, etc
« Numeric/Date predicates: ==, I=, <, >, <=, >=
o Empty predicates: isempty(), notempty(), isnull(), notnull()
Quick Note: has and contains are powerful predicates because they provide the capability to search for bits

and pieces of string data. However, there is a slight difference. Per the Best Practices doc,
the has operator is better performing. Just something to know.

Where operator example:

In the following example, I've added the commenting character (the double-forwardslash covered in Part 3)
to each line to explain what it is accomplishing.

SecurityEvent // The table

| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon

| where AccountType =~ "user" // case insensitive

As shown, the example queries the SecurityEvent table, looking for normal users (non-admins) that had a
successful login in the last hour. Can you see that? For each command line (separated by the pipe character
(|) I talked about in Part 3) the where operator is enacting on the data in a specific way based on the
predicate. In the example, I've used the where operator three different times to further filter the results
that will be produced. | can use the where operator ad nauseam, until the results are exactly what | need
them to be.

Your results in the KQL Playground (https://aka.ms/LADemo) will look something like the following:

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/whereoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/best-practices?WT.mc_id=m365-0000-rotrent
https://aka.ms/LADemo

b Active Directory Health Check
¥ Azure Monitor for Vs

¥ Change Tracking

» Containerinsights

» LogManagement

¥ Metwork Performance Monitor
¥ Security and Audit

» SecurityCenterFree

b Service Map

+ 0L Advanced Thieat Protection
b S0L Vulnerability Assessment

b Update Management

Tieme ramge

SecurityEve
[=
|

Results Chart Colums.

ompleted

12/8/2021. 3:42:02.850 PM
12872021, 34202860 PM

/8202, 3:4203.370 PM

120872021, 3:42:03.413 PM
/82021, 3:4203.430 PM
12/8/2021, 3:42-03.440 PM
12/8/2021, 34203480 PM
12/8/2021. 3:42403.457 PM
12/8/2021. 34203507 PM
12/872021, 34203513 FM

12/8/2020, 324203523 PM

| AccountType =

NACONTOSOHOTELS.COM\tia...
NACONTOSOHOTELS.COM\thma...
NACONTOSOHOTELS.COM\tima.,..
MACONTOSOHOTELS.COM\tEma...
NACONTOSOHOTELS.COMtima....
NACONTOSOHOTELS.COM\tima...
NACONTOSOHOTELS. COM\tama...
MACOMTOSOHOTELS.COM\thma...
NACONTOSOHOTELS.COM\tama...
NACONTOSOMOTELS.COM\ta...
NACONTOSOMOTELS.COM tema...

NACONTOSOHOTELS.COM\tima...

Dispilary e (UTC #0000

DML ma contosohatels. .
DA NG Contasoh
DCWLna.contoschotelsc .
DCna.contoschotels.c.
DCilnacontoschotelsc
DCWLna.contoschotels.c....
DCWuna.contoschotelsc
DCilna.contoschotelsc
DCi0nacontosshotelse
DCALnA Cconosohatelsc .
DCilna.contoschotels.c.

DCinacontoschotelsc

Feedback Qmeries Quary exphorer

Format query

Bicroso Windows Seourily Aud...
Microsoft-Windows-Seourity-Aud...
Microsoft-Windows-Security-Aud...
Microsoft-windows-Security-Aud...
Microsoft-Windows-Security-Aud...
Microsoft-Windows-Security-Aud..,
Microsoft-Windows-Security-Aud_..
microzoft-Windows-Security-Aud...
Microsoft-Windows-Seourity-Aud ...
Microsot-Windows- Seourity- Aud...
Microsoft-Windows-Security-Aud...

Microsoft-Windows-Security-Aud...

& o011 % 364 ecords W

Security
Security

Socurity

¥ Custom Logs

1 - 50 of 364 items

I'm keeping it simple here and focusing only on the string and time predicates. As we move on in the
series, we'll get to the other predicates.

EXTRA: There is one additional piece of clarification | need to make. In the third (/ast line) where statement
of the example query there’s an interesting looking predicate (=~). The tilde (~) character can be used in
string predicates to cause the query engine to ignore case (case insensitivity). So, for our example, I'm
telling the query engine to find every occurrence of the word “user” in the AccountType column no matter
if it's spelled “User” or “user” or “USEr”, etc. Otherwise, it's going to return my request verbatim which
could result in zero results for the AccountType column.

Here, try it yourself in the KQL Playground (https://aka.ms/LADemo) without the tilde and notice that the
AccountType column is empty:

SecurityEvent // The table

| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon

| where AccountType == "user" // case sensitive

The tilde is an extremely useful tool particularly if there have been data or schema changes.

https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/whereone.png?ssl=1

EXTRA CREDIT: If you're hungry for more of the where operator, and just want to continue building your
KQL knowledge until the next part in this series (see the TOC), take the original query example to the KQL
Playground (https://aka.ms/LADemo) and run it line-by-line to see how each line changes the results. You
can insert and remove the double-forwardslash (//) character at the beginning of each command line to
comment it out or to include it.

For example, the following query will show more data than just in the last hour because, as you can see,
the TimeGenerated filter line with the double-forwardslash character.

SecurityEvent // The table

// | where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon

| where AccountType =~ "user" // case insensitive

https://aka.ms/MustLearnKQL
https://aka.ms/LADemo

Must Learn KQL Part 9: The Limit and Take Operators

Because /imit and take are so similar and used for the same purposes, I'm going to combine those in this
part of this series. I'm not going to rehash my hands-on recommendations here, but please check out the
section in Part 8 for those if you either missed it or have forgotten. In my opinion, the hands-on part of
this series is the most important piece.

Up front - there are no functional differences between limit and take. They're like fraternal twins. They
have the same origin and similar attributes but have different names and looks.

In some cases, there are those KQL operators or commands that have similar functions, but one is better
than another in how it reacts with the underlying technologies. Or, better said, one is better performing in
most situations than another. In fact, we have a living document around this. See the KQL Best Practices
doc for more information. Take special notice of the has and contains operators in the list in the Best
Practices doc since | talked about the String Predicates in Part 8.

That said, since there are no true functional differences between /limit and take it comes down to personal
preference.

Limit/Take operator syntax:

Tablename
| limit <number>

Or

Tablename
| take <number>

There are a few things to keep in mind about these fraternal twin operators:

« Sortis not guaranteed to be preserved. This speaks for itself. Don't expect any special
sorting of columns of data to work.

« Consistent result is not guaranteed. No matter how many times you run the same query
with limit or take, it will most assuredly produce different results. The results are always
random.

» Very useful when trying out new queries or performing data sampling. Data Sampling is a
powerful capability of any data scientist or meager KQL query maven. This is a similar activity
for when we used the search operator in Part 4.

o Default limit is 30,000. No matter what number you supply in the query, the results will never
show more than 30,000. That's a hard limit. And, when you think about it,
since limit and take are part of a data sampling technique, you may want to seriously rethink
your strategy (and use a different operator) if you need more than 1,000 rows of data returned -
and that's a generous number.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/limitoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/takeoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/best-practices
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/best-practices

limit/take operator example:

As recommended in Part 8, use the KQL Playground (https://aka.ms/LADemo) to test the following query
example. And for those wanting to better retain the knowledge, try typing the query out instead of
copying/pasting.

And guess what? I've supplied both the /imit and take operator versions so you can start to formulate your
favorite.

SecurityEvent // The table

| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon

| where AccountType =~ "user" // case insensitive

| limit 10 //random data sample or 10 records

ol"

SecurityEvent // The table

| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon

| where AccountType =~ "user" // case insensitive

| take 10 //random data sample or 10 records

Also notice that I'm using the same query example from Part 8 - just adding the /imit and take command

lines at the end. I'll use this same query throughout (as much as possible) to show a standard method of
query development that will lead to creating your very first Analytics Rule for Microsoft Sentinel. Creating
an Analytics Rule for Microsoft Sentinel is a very similar process of starting simple and building bigger.

Your results for either query example will look like the following. Just remember that your results will be
slightly different because of the random nature of the operators.

https://aka.ms/LADemo

i Logs

& Mew Quary 1*

Demo

Tables Cuenes Funct

Group by: Salution

8 UpdateSummany
Active Directory Health Check
Azure Monitor for WMs
Change Tracking
Containerinsights
LogManagement
Metwaork Performance Monit
Sacurity and Audit
SecurityCenterFree
Servics Map
SO Advanced Threat Protection
SOL Vulnerability Assessmant
Update Management

Custom Logs

Time range : Set in query [Sawe Share

SecurityEvent
| &r

EventiD ==

AccountType =

AE24.970 PM
12/13/2021, 44624993 PM
12/13/2021, 44625010 PM

12N3/2020, 44625077 PM

12/13/2021, 4:46:25.140 PM
12/13/2021, 44625280 PM
12/13/2021, 4:46:25.307 PM
12/13/2021, 4:46:25.800 P

12/13,/2021, 4:46:25.430 PA

The table
TimaGens d >

NA.CONTOSOHOTELS.COM\tima...
NA CONTOSOHOTELS.COM\tima..,
MA COMNTOSOHOTELS DOM\tima...
MA.CONTOSOHOTELS. COM\tima....
NA CONTOSOHOTELS COM\tima...
NA. CONTOSOHOTELS.COMtima...
MA.CONTOSDHOTELS.COM\tima...
MA.CONTOSOHOTELS.COM\tima....
NACONTOSOHOTELS COM\tima...

NACONTOSOHOTELS OO\ tima...

howr

g columns

BCNLna.contasohatels...,
DCN.na.contasohotels....
DCN.na.contosohotels_..
DCilma.contoschotels...
DCina.contoschotels .
DBCHna.contaschatels_.,
DCNma.contaschotels_..
DCna.contaschotels...
DCTnacontosohotels .

DN Ascontasohatels_.

Randomness

Fonmat query

Microsoft- Windows-Security-Aud...
Microsoft-Windows-Security-Ausd...,
Microsoft- Windaws-Security-Aud._..
Microsoft-Windows-Security-Auwd_.
Microsolt-Windows - Security-Auwd_.
Microsoft-Windaws-Security-Awd...,
Microsodft-Windows - Security-Aed_..
Miicrosoft-Windows -Security-Auwd_..
Microsoft- Wincdaws-Security-Aud_.

Microsolt-Windows - Secufity-Aud_.

tems per page

Security
Security
Socurity
Security
Security

Security

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/randomness.png?ssl=1

Must Learn KQL Part 10: The Count Operator

If you remember in the last part of this series (Part 9 on limit and take operators) | noted that in the query
tool the query results are limited to 30,000 rows. Depending on how far back the data the is being stored,
i.e., your Log Analytics workspace retention settings, there might possibly be hundreds of thousands of
rows of data in the tables. Now, going back to what | said before (also in Part 9), if you need more than
1,000 rows of data to determine if something exists or is impactful to the environment, you might want to
change your strategy. In my opinion, just knowing that a potential security situation exists is important
enough to circle the wagons.

But a count of something is a good measure to get a better understanding of the overall impact of a
situation.

For example, if there’s one or two occurrences of a single person locking themselves out of their account
in the last 30 days, that's not usually a big deal. It's most likely someone who forgot their password. As
remediation, we can suggest to their manager that they might need to invest in training. We've all worked
with those types of people. And as many of those types we know professionally, we probably know many
more personally. My mom, my dad, my wife - yes, I'm also afflicted by those that believe passwords are
just a nuisance and not something worth remembering.

But if we have a record of that single person locking themselves out of their account 100 times in the last
30 days, that's a more immediate concern.

This is where the count operator really shines.

Count operator syntax:

Tablename
| count

On its own, just using the operator syntax listed above will show the exact number of rows in a given
table. For example, the following query shows how many rows exist in the SecurityEvent table.

SecurityEvent
| count

Typing out this query in the KQL Playground (https://aka.ms/LADemo) will show something like the
following screenshot...

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://aka.ms/LADemo

b Logs

B Naw Query 1* Feedback Cuesies Query explorer
& Demo & range : Last 24 hours 5] Sawe share " t rue Hpoi & Pan fo dashbe Fonmat query

. _ SocurityEw
Tables Cueries Functions S IERMT:

Fiter Group by: Solution «~

Collapse ol
Favorites
Resulis § Chart Columns] Group columns

‘Showing results from the last 24 hours.

¥ Active Directory Health Check
¥ Azure Maonitor for Vs

¥ Change Tracking

¥ Containerinsights

¥ LogManagement

b Network Performance Maonitor

b Security and Audit

Number of rows in the SecurityEvent table

Now, let's take the same query we've been using for all of our query building exercises so far and add
the count operator to it. Type this query in the KQL Playground (https://aka.ms/LADemo):

SecurityEvent // The table

| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4624 // Successful logon

| where AccountType =~ "user" // case insensitive

| count // Number of successful logons

As before, the query results show us the number of successful logons in the last hour by all standard
(non-admin) users. But, now with the count operator, the results tell us the total number of times this
occurred.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://aka.ms/LADemo
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/SecurityEventRowCount-1.png?ssl=1

. Logs =

® New Query 1*

*® Demo Time range : Set in query 3| Save + New alert rule Export
Tables Queries Functions SecurityEvent // The table
| where TimeGenerated > ago(

| where EventID == 4624 sful logon
o : | where AccountType = case insensitive
5 | count // Number of successful logons
Filter Group by: Solution ~

Collapse all
4 Favorites

B AzureActivity Columns sl Group columns

B SecurityAlert

]

]

» [SecunityEvent
» [signinlogs

» [UpdateSummary

» Active Directory Health Check

» Azure Monitor for VMs

Number of successful logons

| think we can agree that this is much more impactful data than just showing row after row of data and
then having to manually sift through it. It's important to grasp that adding a simple line to our original
query changed everything. It made it even more powerful and even more relevant for our purposes.

Hopefully, you see as we are building our query toward Analytics Rule creation (see the TOC), that only
simple steps are required to get us there. Each part of this series is intended as just one more simple step
in the learning process.

The count operator will be a key to Analytic Rule development. In the next part of this series (see the TOC),
I'll talk about the summarize operator where the count operator will come into play again. In fact, we'll be
working with count quite a bit throughout the series. As important as the where operator is for filtering
data (Part 8), the count operator is equally significant for its myriad of uses including helping create graphs
and charts when we get to the render operator (see the TOC).

EXTRA CREDIT: The number of successful logons (Event ID 4624) is not necessarily something we look for
when searching for security events. Instead, Event ID 4625 (unsuccessful logon) is the one most used to
expose issues. For extra work and fun, in the KQL Playground (https://aka.ms/LADemo) simply change
4624 in the query to 4625 and run it again.

https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://cda.ms/3p4
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/summarizeoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://cda.ms/3sH
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/countoperator
https://aka.ms/MustLearnKQL
https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/SuccessfulLoginCounts.png?ssl=1

SecurityEvent // The table

| where TimeGenerated > ago(1h) // Activity in the last hour
| where EventID == 4625 // Unsuccessful logon

| where AccountType =~ "user" // case insensitive

| count // Number of successful logons

In the KQL Playground (https://aka.ms/LADemo) you should get 0 (zero) results for your effort, but this is
also an impactful number. If there are no unsuccessful logons in your environment - ever - you have been
gifted with the unicorn of end-user populations and you should never leave your post.

@ Logs

Demo
New Query 1*
Demo Time range : Set in query El save # -+ New alert rule Export
s - SecurityEvent // The table
Tables e Functions | w = TimeGenerated > ago(lh) // Activity in the last
EventI -."/ Unsuccessful logon

Je) 2 v B AccountType =~ “user” // case insensitive
count // Number of successful logons| T

Filter Group by: Solution

Collapse all

4 Favorites

» B AzureActivity Columns (®) Group columns

» [H SecurityAlert

» [SecurityEvent

» B SigninLogs

» B UpdateSummary

» Active Directory Health Check

» Azure Monitor for VMs
Yay! No unsuccessful logons!

https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2021/12/UnsuccessfulLogonCounts.png?ssl=1

Must Learn KQL Part 11: The Summarize Operator

For this part in this Must Learn KQL series, | once again want to take the logical next step as we march
toward generating our very first Microsoft Sentinel Analytics Rule (see the TOC for the cadence). We have
a lot of ground to cover before then, but the next few operators we talk about are useful for various
reasons - one of those reasons, like this section’s Summarize_operator talk, is to produce number data to
encapsulate actions. By creating thresholds, we can generate additional logic for how we want to react to
situations. For example, if there’s one person that failed login in the last 10 days, it's a non-issue. But, if
that account failed login 100 times in the last 5 minutes - well - we have a problem. Summarizing the data
makes it more meaningful.

The Summarize operator does just what it suggests - it summarizes data. In deeper terms, it produces a
table (in the results) that aggregates the content of the input table. As an example of this, use the following
KQL query in the KQL Playground (https://aka.ms/LADemo) to see the results. And, as before, try typing
the query into the KQL Playground instead of just a copy/paste operation. If you see an error, you
might've fat-thumbed something so you can use the inline code to compare against. Query
troubleshooting is a great skillset to have.

SecurityEvent // The input table

| where TimeGenerated > ago(1h) // Activity in the last hour

| where EventID == 4624 // Successful logon

| summarize count() by AccountType, Computer //Show the number of successful logons per computer and
what type of account is being used

Your results should be like the following:

https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/summarizeoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/summarizeoperator
https://aka.ms/LADemo

b Logs =

*® New Query 1=

#* Demo Time range : Setin query E) save Share + New alert rule Export £ Pin to dashboard

SecurityEvent // The table
e TimeGenerated > ago(ih) // Activity in the last hour
| where EventID == 4624 /f Successful logon
o H 4 | summarize count() by AccountType, Computer //Show the number of successful logons per computer and what t

Tables Queries Functions

Filter Group by: Solution

Collapse all

4 Favorites
v B AzureActivity Columns (] Group columns
b B SecurityAlert

b B SecurityEvent

» B Signinlogs \coountType

» B UpdateSummary Machine DC00.na.contosohotels.com

* Active Directory Health Check Machine DCO1.na.contosohotels.com

* Azure Monitor for VMs Machine DC10.nacontosohotels.com

¥ Change Tracki
9 g Machine DCii.na.contoschotels.com

* Containerinsights
User DC1.na.contoschotels.com

» LogManagement
. DCO1.na.contosohotels.com
* Network Performance Monitor

» Security and Audit User DC10.na.contosohotels.com

» SecurityCenterFree User SQLO0.na.contosohotels.com
» Service Map User DCO0.na.contosohotels.com
* SQL Advanced Threat Protection Machine JBOX00

» SQL Vulnerability Assessment Machine Victim00.na.contosohotels....

* Update Management Machine RETAILVMO

* Custom Logs
o9 Machine AppBEOO.na_contosohotels....

Summarize Operator Syntax

Tablename
| summarize Aggregation [by Group Expression]

« Simple aggregation functions: count(), sum(), avg(), min(), max(),

« Advanced aggregation functions: arg_min(), arg_max(), percentiles(), makelist(), countif()

The Simple aggregations should speak for themselves. While the Advanced ones may require a bit more
information. I'll leave these descriptions here for posterity, but we'll actually circle back later in this series
to cover them in depth. Again, our series is a building operation. | don't want to give you too much too
soon and want to do so in a logical fashion so it all makes sense and learning is easier to retain.

Advanced aggregations:

o arg min(), arg_max(): returns the extreme value
« percentiles(): returns the value at the percentile

o make_list(), make_set(): returns a list of all values/distinct values respectively

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/summaryresults.png?ssl=1

Now that we're deep into this series with Part 11, I'm going to attempt to do a bit less handholding. If this
is your first introduction to this series, | highly suggest going back and making it through from the start

because each new section or chapter builds on the previous ones. You can find the entire series tabulated
in the TOC.

With that, | want to leave you with some additional Summarize exercises that you can work with in the
KQL Playground (https://aka.ms/LADemo). These use the Advanced aggregates and I'll refer to these later.

SecurityEvent

| where EventID == 4624

| summarize arg_max(TimeGenerated, *) by Account

AzureDiagnostics

| summarize arg_max(TimeGenerated, *) by Resourceld

SecurityEvent

| summarize AdminSuccessfullLogons = countif(Account contains "Admin" and EventID == 4624),
AdminFailedLogons = countif(Account contains "Admin" and EventID == 4625)

As you can tell, this is not quite the end of our Summarize operator discussion. There will be plenty more.
In fact, other than later in the series, I'll talk about Summarize even more in the very next part when |
cover the Render operator in Part 12.

https://aka.ms/MustLearnKQL
https://aka.ms/LADemo

Must Learn KQL Part 12: The Render Operator

This chapter may seem like somewhat of a detour on our path to using KQL queries to create Analytics
Rules for Microsoft Sentinel, but there’s some very real value in turning rows and columns of data into
visualizations. Sure enough, across Microsoft Sentinel, you'll use KQL for almost everything - that includes
the Workbooks feature that allows organizations to develop their own views of the security data.
Workbooks can be used to create dashboards of consolidated data. I've worked with several customers in
911-emergency-type settings where they erect massive screens at the front of the room. KQL allows them
to create the dashboard views that display on the screens so the entire security team can be privy to
potentially nefarious operations in near real time. So, understanding how KQL can produce visualizations
is important.

There's another great reason to put some effort into learning how to transform static data into graphs
and charts - and it's not just because | said in Part 6 when | gave the tour of the User Interface...

| preface this post by saying this: everything discussed in this
post about the User Interface (Ul) can be done (and should be
done, eventually) in the KQL query itself.

Rod Trent, Part 6 of the Must Learn KQL series

| like to think of myself as a reader. | remember growing up reading book after book and loving it. One of
my favorite series was the Hardy Boys. | read the entire series and some of the books more than once. |
seriously believe that mystery books like those have a lot to do with my fascination with cybersecurity.
But, somewhere along the way | was introduced to comic books and telling stories with pictures and
words was fantastic to me. I'm a visual, hands-on type of learner so comic books really filled a void.

Fast forward to today. Every day | read tomes of emails, Teams messages, social media posts, etc., etc.
And frankly this has soured me to just general reading. Friends and family are always recommending
books and I just look at them and shake my head. Once they see my response to their recommendations,
they quickly switch to “well, just get the audiobook version, you'll love it” as if that's somehow a better
alternative. | truly wish | could go back and be that early reader and get excited about it all. But | read so
much as part of my job, sitting down with a book in a quiet room now seems like torture to me. But, as a
visual learner, that comic book style still appeals to me. If you can show me in a meaningful way the
storyline of a threat, I'm all in.

P.S. I still read comics books to this day.

And that, for me, is where the KQL Render operator comes in. Render tells the query engine that you want
to take the data you've supplied, and show it in any of the following ways (visualizations):

o areachart - Area graph. The first column is the x-axis and should be a numeric column.
Other numeric columns are y-axes.

https://amzn.to/3z7a56d
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/renderoperator?pivots=azuredataexplorer

e barchart - First column is the x-axis and can be text, datetime or numeric. Other columns
are numeric, displayed as horizontal strips.

o columnchart - same as barchart.
o piechart - First column is color-axis, second column is numeric.

» scatterchart - Points graph. The first column is the x-axis and should be a numeric column.
Other numeric columns are y-axes.

o table -this is the default view.

o timechart - Line graph. The first column is x-axis, and should be datetime. Other (numeric)
columns are y-axes.

Something important to know is that each visualization requires a certain data type before it will display.
I've boldened those requirements in the list above. As you see, many of the requirements are numeric,
hence why | covered the Summarize operator in the previous part/chapter 11 (see the TOC). What | didn't
cover in Summarize was how to take numeric and datetime values and group them into smaller specific
values for use in visual displays using the Render operator. In the examples below, I'm including bin and
time for your hands-on exercises in the KQL Playground (https://aka.ms/LADemo) but understand that Bin
rounds values down to an integer multiple of a given bin size. It's used frequently in combination

with summarize by. If you have a scattered set of values, they will be grouped into a smaller set of specific
values. For the first examples below, recognize that bin is being used to split out a week’s worth of data
into daily chunks.

Render Operator Syntax

Tablename
| render visualization

Just the Data

SecurityEvent //The table
| where TimeGenerated > ago(7d) //Looking at data in the last 7 days
| summarize count() by bin(TimeGenerated, 1d) //Using Bin to group the data by each day

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/summarizeoperator
https://aka.ms/MustLearnKQL
https://aka.ms/LADemo

Completed

1/10/2022, 12:00:00.000 AM 254,327
1/9/2022, 12:00:00.000 AM 343,903
1/6/2022, 12:00:00.000 AM 337,273
1/8/2022, 12:00:00.000 AM 324,150
1/7/2022, 12:00:00.000 AM 322,246
1/5/2022, 12:00:00.000 AM 338,209
1/4/2022, 12:00:00.000 AM 334,734

1/3/2022, 12:00:00.000 AM 84,785

Just the data

The Data as a Barchart

SecurityEvent //The table
| where TimeGenerated > ago(7d) //Looking at data in the last 7 days

| summarize count() by bin(TimeGenerated, 1d) //Using Bin to group the data by each day
| render barchart //Looking at the data in a Barchart

Completed ® 00:003] 8 records

i:—:'
]
i
=
-

TirmeG:

Data in Barchart view

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/barchart.png?ssl=1

Here's a couple additional examples for you to work with. The first one shows IP addresses with the most
activity and the second displays disk space available for virtual machines.

And lastly...if you want something with a really spectacular view, | give you a burst of exciting color.

IP Address Activity

VMConnection //Tablename

| summarize count() by Sourcelp //Summarizing found IP addresses
| sort by count_ desc //Sorting the list in descending order

| render barchart //Showing the data in a barchart to show activity

Drive Space

Perf //Tablename

| where CounterName == "Free Megabytes" //Looking for free megabytes

| where InstanceName matches regex "*[A-Z]:$" //Looking for regular expressions for drive letters

| summarize min(CounterValue) by bin(TimeGenerated, 1d) //Grouping the data by each drive letter found
| render columnchart

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/ipaddresses.png?ssl=1

TimeGenerated [UTC]

min_CounterVahe

00000...pretty!

Usage //Tablename

| summarize count_per_type=count() by DataType //Creating the numeric value (summary) for types of data
| sort by count_per_type desc //Sorted by descending order
| render piechart //Display the data in a piechart

InsightsMetrics (2.59%)
~ AzureDiagnostics (2.59%)
™ VMConnection (2.54%)
ContainerLog (2.54%)
™ Heartbeat (2.48%)

AppPerformanceCounters (1.94%) —
AppEvents (1.94%)
ConfigurationChange (2%) '

@ Alert ApplwailabilityResults AppBrowserTimings AppDependencies
Applvents Applxceptions @ AppMetrics @ AppPageViews

@ AppPerformanceCounters AppRequests @ AppServiceApplogs AppServiceFileAuditLogs

@ AppServiceHTTPLogs @ AppSystemEvents @ AutoscaleEvaluationslog

R . [e : - maas

A 174

In the next two parts/chapters, we'll get back on track as | start discussing how to manipulate the results
that are display using the Extend and Project operators.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/drivespace.png?ssl=1
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/cool.png?ssl=1

Must Learn KQL Part 13: The Extend Operator

| think it's necessary at this point to do a slight self-recap because in the next few parts/chapters for this
Must Learn KQL series (parts 13-16), I'll talk about how to manipulate the KQL query results so that they
can be customized to show exactly what is important to your operations.

Jumping all the way back to Must Learn KQL Part 3: Workflow, realize where we are in the workflow. We're
actually very near the end of our original goal. We have discussed finding and organizing data, now it's
time to learn how to provide custom views of the data.

Custom data views are important in that each environment is different and each environment's
requirements for security will differ - sometimes greatly. Whether it's geographical, business political, or
something else, the data that is exposed will alter the perception of the organization’s risk. So, it's
important to expose the right data.

One valuable operator provided with KQL to customize the data views is the Extend operator. The Extend
operator allows us to build custom columns in real-time in the query results. It allows you to create
calculated columns and append them to the results. Understand, though, that we're not creating columns
of data that are stored back into the data table, but only generating a column of custom data based on
our current request.

Here's a good example...

The following query looks through the Computer data column in the SecurityEvent table, calculates the
character length of the name of each computer found, and produces custom column called
‘ComputerNamelength’ in the results. Feel free to use this query our the KQL Playground demo
environment (https://aka.ms/LADemo).

SecurityEvent //the table
| extend ComputerNameLength = strlen(Computer) //creates a new column called ComputerNameLength of
the calculation of the number of characters of the computer name in the Computer column

Here's what this will look like...

https://azurecloudai.blog/2021/11/19/must-learn-kql-part-3-workflow/?WT.mc_id=m365-0000-rotrent
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://aka.ms/LADemo

Time range : Last 24 hours Share Mew alert rule Export Pin to Format query

1 SecurityEvent //the table
| extend ComputerNamelLength = strlen(Computer) //creates a new column called ComputerNamelength of the calculation of the number
of characters of the computer name in the Computer column

Results Chart Columns v Display time (UTC-05:00) (] Group columns

Completed. Showing partial results from the last 24 hours. @ o0:12.0 {¥] 30.000+ records ¥

i Showing the first 30,000 results. on how to narrow down the result set.

1/18/2022, 5:21:22.667 AM NT AUTHORITY\SYSTEM Windows3655enti
1/18/2022, 5:21:29.807 AM i Windows3655enti
1/18/2022, 5:22:03.120 AM NT AUTHORITY\SYSTEM Windows3655enti
1/18/2022, 5:22:50.603 AM CPC-rodtrent-E2

1/18/2022, 5:22:50.603 AM CPC-rodtrent-E2

1/18/2022, 5:22:55.007 AM NT AUTHORITY\SYSTEM CPC-rodtrent-E2

Custom column

Again, this column of data is generated in real-time. Once the results have been cleared, this data no
longer exists.

Extend operator syntax

TableName
| extend [ColumnName | (ColumnName]|, ...]) =] Expression |, ...]

In simpler terms, just as before with our standard query workflow we (1) give the query engine the table
we want to use, then (2) use the extend operator to assign a custom name to a new column, and then (3)
insert data into it.

So, using the previous example, I:

1. Designated the SecurityEvent table
2. Assigned the name ComputerNamelLength to the new column

3. Inserted the data | wanted to see. In this case, the hostname length for each computer found in
the data.

The data that is inserted into the custom column(s) can be text, number values, calculations, etc., etc., etc.
| can use and combine existing table data, or | can fabricate data to be included in the custom column.

In the following example, I'm literally just making stuff up in that the first column called My_Calculation, is
just the result of 8 x 8 (64), and My_Fabricated_Data is just something | wanted to say.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/computerlength.png?ssl=1

SecurityEvent
| extend My_Calculation = 8*8
| extend My_Fabricated_Data = "Yay for me!"

The results look like the following...

Time range : Last 24 hours - New alert rule

1 SecurityEvent
| extend My Calculation = 3*3
| extend My Fabricated Data = "Yay for me!"

Results Chart Columns Display time (UTC-05:00) ~» (@) Group columns

Completed. Showing partial results from the last 24 hours. @ 00:13.5 {7 30,000+ re

1 Showing the first 30,000 results. on how to narmow down the result set.

TimeGenerated [Local Time] / My_Calculation %W My _Fabricated_Data \ \ccount

1/18/2022, 7:39:55.017 AM

Yay for me! NT AUTHORITY\SYSTEM
1/18/2022, 7:39:55.030 AM Yay for me! NT AUTHORITY\SYSTEM
1/18/2022, 7:39:55.007 AM Yay for me! WORKGROUP\CPC-RODTRENT...
1/18/2022, 7:39:55.023 AM Yay for me! WORKGROUP\CPC-RODTRENT...
1/18/2022, T:42:00.730 AM Yay for me! NORTHAMERICA\MININT-Q64...
1/18/2022, T:42:01.113 AM Yay for me! NORTHAMERICA\MININT-Q64...
1/18/2022, T:42:04.403 AM Yay for me!
1/18/2022, T:42:04.590 AM Yay for me! NORTHAMERICA\rotrent

1/18/2022, 7:42:07.740 AM NORTHAMERICA\rotrent

64
64
64
64
64
64
64
64
64
64

Just random stuff
But the true beauty of this function is to take existing data, combine it, and display it in meaningful ways.

Take the following as an example of using existing data to make to display it in better ways. Use the
following query in the KQL Playground (https://aka.ms/LADemo).

Perf //table name

| where CounterName == "Free Megabytes" //filtering data by 'free megabytes'
| extend FreeKB = CounterValue * 1024 //calculating free kilobytes

| extend FreeGB = CounterValue / 1024 //calculating free gigabytes

| extend FreeMB = CounterValue //calculating free megabytes

https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/mystuffhere.png?ssl=1

This example looks at the Perf table to find free disk space on the recorded systems and display it in
kilobytes, megabytes, and gigabytes. Your results will look something like the following:

Time range : Last 24 hours] Sawe Share L peew alert rul o 1 Format query

fitable name
Counterlane ==
Freeill = Counteryaluee
FrecGl = Counteryalee [
FreeMl = Counteryaloe f/cals

Results Chart Columns Display times (UTC +00000) Group columns

Completed. Showing partial results from the last 24 houwrs. @& orms [30000

H Showing the first 30,000 results. on how o namow dosam the result set.
- S

1182022 3205:45.967 P 48,510,976 DC.ma contosohotels.com LogicalDisk Free Megabytes =

1AB/2022. 3:05:45.967 P 15,344,540 DL Ra.contosohatels.com LogicalDisk Froe Megabytes o

1182022 3205:45.967 P AT6. 60 , 65 DC.ma contosohotels.com LogicalDisk Free Megabytes HarddiskVolume1

1AB/2022. 3:05:45.967 P BL3NTTE DL Ra.contosohatels.com LogicalDisk Froe Megabytes _Tatal

1B/2022 30806207 P W0L020,096 99,629 DCMnaconoschotels.oem LogicalDisk Free Megabytes =

118/2022, 30806207 P 15,330,304 DO ma.contoschotels.com Logical Disk Free Mogabytes (13

118/2022, 320806207 P ATE, 60 ! . na.contoschotels.com Logical Disk Free Mogabytes Harddiskodums1

118/2022, 30806207 P M7.826, 560 DO ma.contoschotels.com Logical Disk Free Mogabytes _Tatal

IE/2022, 30809370 P 100,355,312 JECO000 Logical Disk Free Mogabytes c

82022, 30805370 F‘h}'&_\ 15,332,352 IRON00 Logical Disk Free Mogabytes o
"

Free disk space

The Extend operator is a valuable tool to enable customizing the data that is displayed. As noted, we'll be
working with several KQL operators to help develop our own custom views in the next few parts/chapters.
But the Extend operator is a key creation key tool that you'll find used throughout tools like Microsoft
Sentinel to provide things like data parsing and creating custom entities. If you're working with data from
custom log files, for example, that data is probably not normalized, and you'll need to expose things like
usernames and hostnames that can't be exposed on their own. This is where the Extend operator
provides huge value. And, as we continue our march to building your first Microsoft Sentinel Analytics
Rule, the Extend operator is yet another logical step in that process. Extend is used quite a bit in Analytics
Rules, so understanding its power and capability is important.

For those that want just a little bit more before we come together again for the next part/chapter, here’s a
task for you.

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/freedisk.png?ssl=1

| was tasked recently to locate billable data by computers - or which computers were costing the company
the most. The following is what | came up with.

find where TimeGenerated > ago(1d) project _BilledSize, _IsBillable, Computer, _Resourceld
| where _isBillable=true and isnotempty(Computer)
| summarize billedData = sumif(_BilledSize, _IsBillable=~true),
freeData = sumif(_BilledSize, _IsBillable=~false) by Computer
| extend Total_Data = billedData + freeData
| order by billedData desc

Now, don't freak out. This is not that difficult to understand. Remember, our goal with this series is to be
able to look at a query and understand what the results will be - whether we created the query or not.

Take some time and break this down.

Must Learn KQL Part 14: The Project Operator

As noted in part/chapter 13 of this series, the next few parts/chapters (parts 13-16) will be all about how
to manipulate the results of the KQL queries. As shown in part/chapter 13, the Extend operator allows us to
create (and even fabricate) special data to show in the results. On its own, that's hugely valuable. But, also
noted throughout this series, the results of the query are the most important part of the process because
the types, formats, and ways the data is displayed will allow us to focus on the actual security prospects.
And when it comes to identifying threats quickly, efficiency is key.

While part/chapter 13 provided a way to build custom views of the data, that data was still populated
among all the rest of the data. Now we get to do something with the data. We get to choose exactly what
is displayed to afford our security teams the chance to catch things quickly. We can choose to display our
custom data, but then handpick everything else.

This is where the Project operator comes into play. Using the Project operator, | can tell the query engine
the exact data columns to show. In this case, by the way, Project is pronounced like as in projector.

The Project operator takes on the following syntax:

Tablename
| project column1, column2, column3

Let's take the query we used in part/chapter 13 and add one single line to end. Use the KQL Playground
(https://aka.ms/LADemo) for your hands-on experience with the following query.

Perf //table name

| where CounterName == "Free Megabytes" //filtering data by 'free megabytes'

| extend FreeKB = CounterValue * 1024 //calculating free kilobytes

| extend FreeGB = CounterValue / 1024 //calculating free gigabytes

| extend FreeMB = CounterValue //calculating free megabytes

| project Computer, CounterName, FreeGB, FreeMB, FreeKB //only show these columns

In this query example, that one single line addition simply tells the query engine to only display the
existing Computer and CounterName columns along with my custom created columns (FreeGB, FreeMB,
FreeKB). See that?

Look at the differences in the following comparison images. The top one comes from part/chapter 13 and
shows literally every column in the Perf table with my custom created data weaved in. The bottom one is
much more concise, precise, and oh so nice.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://aka.ms/LADemo

Tirmve range : Last 24 hours o] Sawve Share 4 Hew alert nde £ Fin e Format query

Perf fftableé nome

| where CounterMame == “Fr gabytes™ Sffiltering data by “free megabytes’
| nd FreelB = Countervalue * ffcalculating free kilobytes

| nd FreeGl = Countervalue / ffcalculating free gigabytes

| r

(J

5 exte

1 FreeMB = CounterValue //calculating free megabytes

Results Charl Columns ™ Digplay time (UTC+0000) L Group columns

Completed. Showing partial results from the last 24 hours. @ 00020 [F 30,000+ reconds

I showing the first 30,000 results. on 0w 1o naimow down the result set.

1/20/2022, 5:20034.817 PM 120927232 15.325 AppFEODDOCNF (=]

202022, 520034 817 PM 14,748,672 14.065 AppFEODDOCHE i . 64

120/2022, 5220034.817 PM 476,160 D54 AppFEODDOCHNF Harddiskvolumel
20/3022, 520034 817 PM 34,816 0033 AppFEODDOCHNF i E HarddiskVolumed
1/20/2022, 5:20034.817 PM 136,166,880 AppFEODDOCNF Total

1/20/2022, 5:19:24.953 PM 121,900,288 AppFEODDOCNE 1=

120/ 3022, 51924 953 PM 14,748,672 AppFEDDDDCNE i o O

W20/2022, 5:19:24.953 PM 476,160 AppFEODDOCNE Harddiskvolumel

1202022, S 124.953 PM 34,876 AppFEOODDCME i i HarddiskVolumed

1/20/2022, 5:19:24.960 PM 136,350,936 AppFEODDOCNE

Tirme range @ Last 24 hours S Save Share =} hew alert rule Formal query

Perf fftable name
dere CounterMame == "Fr gabytes™ fffiltering data by 'free megabytes’
FreekB = CounterValue * Ffcalculating free kilobytes

EF il CountarUalisg §iralonlarisg fron mamabistag

[t

|

|

| extend FreeGB = CounterValue / ffcalculating free gigabywtes
i

i .

wroje Computer, Counterdame, FreeGB, FreeMB, FreekKB //only show these columns

Fesults Chart Columins [] Group columns

Completed. Showing partial results from the last 24 hours. @ 002 [30,000+ records

i" showing the first 30.000 results. on o B namew down the result set.

JEOXID 100,036,608
JBOXID 14654 15,366,144
JEOXID 4% 478,160
JBOXI0 051 5878512
AppREOQ.na.contosohotels.... a97.729 WLATETTE

AppBIO.Na.cor hotels.... 1461 15.321.088

AppBEDQ.na.contosohotels_.. 0.454 478,160
AppBEIQ.na.contosohotels... T8, 273.024

RETAILVRBAM 07572224

RETAILVNOT 15.350.784

k RETAILYBAG ATE, 160

ofgon B M %0 tems per page 1 - 50 of 30000 tems

The Project operator may seem like a simple tool, but its hugely powerful, giving you data choice.

But there’s more to it. As the TV detective, Columbo, used to say: Just o re thing

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://youtu.be/QxBnaMGP2aY
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/differences.png?ssl=1

The Project operator has more depth than you might realize.

First off, like the Extend operator, you can use Project to create custom columns. For example, the
following query eliminates the Extend operator completely and just creates the same custom columns as
before.

Perf //table name

| where CounterName == "Free Megabytes" //filtering data by 'free megabytes'

| project Computer, CounterName, FreeGB=CounterValue / 1024, FreeMB = CounterValue, FreeKB =
CounterValue * 1024 //only show these columns

You might think based on this that, hey, I'll never need to use the Extend operator again. But, no, that's not
the case and I'll dig deeper into this as we get closer in the series to building an actual Analytics Rule (see
the TOC).

And, then there are also some other Project options that are so hugely valuable that they have their own
operator reference page and are considered their own operators. However, in respect to our discussion in
this series you should absolutely keep each of these in your toolbelt and have knowledge about them.

Here's why:

Project-away - Select what columns from the input to exclude from the output. Project-away is probably one
of my favorite Project operator variants because it's an efficiency tool. Most tables have 25 or more data
columns stored inside. What if you want to display all columns except for 4 or 5? Would you use

the Project operator and just manually type out 20 columns to show? | hope not - once you understand
how Project-away works. Using Project-away you can effectively tell the query engine to

display ALL columns EXCEPT the one's you list in the Project-away statement. Notice also that wildcards are
supported:

Tablename
| project-away column1, column2, column3*

Project-keep - Select what columns from the input to keep in the output. This Project variant is essentially the
default operation. Hint: Just use the standard Project option.

Project-rename - Renames columns in the result output. This option gives you the ability to rename column
headers during query-time. Don't like a column name? Or, maybe your team has standardized on
Computer as a specific value for the Hostname column. This is how you can change the column name in

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://aka.ms/MustLearnKQL
https://aka.ms/MustLearnKQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectawayoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/project-keep-operator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectrenameoperator

the results. Note that this does not change the data column name in the table - just in the query-time
results.

Tablename
| project-rename my_new_column_name = old_column_name

Project-reorder - Reorders columns in the result output. Most generally, the order of columns in the results
will be determined based on their original order in the table. But, alas, sometimes even that doesn’t hold
true. If you want to make sure to display the columns in a specific order without turning their fate over to
chance, use project-reorder.

Tablename
| project-reorder column2, column3, column1

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectreorderoperator

Must Learn KQL Part 15: The Distinct Operator

The next couple parts/chapters in the Must Learn KQL series are shorter ones as we complete the series-
within-the-series (parts 13-16) on manipulating the query results So, in this mini-series far we've talked
about how to create custom columns with the Extend operator and shown how to display (or not display)
specific data in the results using the Project operator. But what if you need to get even more granular with
the data that is presented? This is where the Distinct operator comes in.

As you can imagine by the operator’'s name, the Distinct operator delivers results based on
a distinct combination of the columns you provide.

For example, if | have 100’s of computers stored in the table, each with their own combination of activity
and data, but | only want to know each computer name, | will supply a KQL query similar to the following:

SecurityEvent //the table
| distinct Computer //show distinct computer names

Feel free to use the KQL Playground (https.//aka.ms/LADemo) we've used throughout this series to try this query
out yourself.

Look at the results differences between using just the Project operator against the Distinct operator.
Notice the differences in simplicity of what is displayed along with the volume of what is displayed.

nsohotels oom
* DCOLRacamosohotels.com
¥ DCDOnacomoschotels com
APpBETLA.
A pBE Aacon lisehotia...

RETAILVMOY

sohotels com

¥ DC¥LRA comosahobets com |

—

Project versus Distinct

Distinct can also be used for more than one data column as is shown above and is generally intended (as /
mentioned above) to produce a combination of the columns you provide. The beauty of the Distinct
operator is that it allows you to get extremely precise in what is returned, which is hugely important when
using KQL to perform security Hunting operations - which I'll cover after we've achieved our goal in this series
of creating our first Analytics Rule for Microsoft Sentinel (watch the TOC for details).

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/extendoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://aka.ms/LADemo
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/projectoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/distinctoperator
https://aka.ms/MustLearnKQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/ProjectvsDistinct.png?ssl=1

Before handing you off to a series of hands-on opportunity examples, let's take some of our accumulated
knowledge and apply it to this same scenario. What if we wanted to not only show the distinct computer
names (as in the example above), but also needed to show how much activity each computer has been
responsible for over the last 24 hours?

Don't cheat! Think about it for a second. What operators would you combine with Distinct? How would you
get a summarized count of distinct computers? <== there’s a hint in there

Remember, story problems and developing storylines are the basis for all security. That doesn’t just mean
things like who did it and why, but also includes how to expose the data to show the story. That's
important.

OK...here's who | would supply the result from the ask:

SecurityEvent //the table

| summarize count() by Computer //getting the count of computers

| distinct Computer, count_ //showing the distinct computer names, combined with the count of how many
times each computer has been reported with some sort of activity

In the example, notice that I've used summarize to get a count of all Computers first, then combined the
Computer data column with the count in the last line using Distinct.

Your results using the KQL Playground (https://aka.ms/LADemo) will be something like the following...

Time range : Last 24 hours =] Save Share New alert rule Export % Pinie Format query

SecurityEvent //the table
. E nt(} by Comput £ ting the count of computers
t Computer, count_ /, ing the distinct computer names, combined with the count of how many time h computer has been reported with some sort of

Results Chart Columns (] Group columns

Completed. Showing results from the last 24 hours. @ 00:005 FFl 56 records

DC11.na contosohotels. com
DC10.na.contosohotels.com
DCOlna.contosohotels.com
DCo0.na.contosohotels.com
AppBEQ1Lnacontosohotels....
AppBEDQ.na.contoschotels....
RETAILVIMIOT

SOLO0.na contosohotels com
Victim00.na.contosohotels.....
S0L12.na.contosohotels.com
SQL01.na.contosohotels.com
AppFEOOOD003

JBOXDO

items per page 1 - 50 of 56 ite

Count of Computer Activity

https://azurecloudai.blog/2022/01/05/must-learn-kql-part-11-the-summarize-operator/?WT.mc_id=m365-0000-rotrent
https://azurecloudai.blog/2021/12/14/must-learn-kql-part-10-the-count-operator/?WT.mc_id=m365-0000-rotrent
https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/01/countcomputers.png?ssl=1

All YOU, baby!

The following series of KQL queries gives you a chance to get some hands-on experience with more of the
Distinct operator and a chance to shine your growing expertise. While the following examples are not
specifically security related, | believe you will find them interesting because KQL transcends one product,
one workload, or one area of focus. It's good to reiterate this. KQL is important to anyone working in
Azure and will only become more critical as time progresses. You need to elbow nudge your colleagues
over this. Your KQL learning in this Must Learn KQL series could lead to a whole new career path.

Take the following examples and run them in the KQL Playground (https://aka.ms/LADemo) and then
prepare for the last part/chapter of this series-within-a-series on manipulating results.

P.S. If you're just being introduced to this series, | entreat you to start at the beginning before digging into the
examples - unless of course, you're already a KQL master.

Perf //the table
| distinct Computer //find all the computers that are reporting performance data to Log Analytics

Perf //the table

| distinct ObjectName //Using the same performance example, finding all the object types that we have
performance data for

Perf //the table
| distinct ObjectName, CounterName //We want to see all the metrics for each object, in this case CounterName

UpdateSummary //the table

| distinct Computer, WindowsUpdateSetting //We can get our Windows Update Settings for all servers we’re
managing with the Update Management solution

UpdateSummary //the table

| distinct Computer, WindowsUpdateSetting, OsVersion, OldestMissingSecurityUpdateInDays //However,
we're not limited to just one or two fields. We can add more, in this example we’ll get our servers, their update
setting, OS version and the oldest update they need in days

Update //the table
| where UpdateState == "Needed" //retrieve only those systems where updates are needed

| distinct Computer, KBID, Title //Finally, we can quickly build a report of systems needing updates, the KB
number and title of the update

https://aka.ms/LADemo
https://aka.ms/MustLearnKQL

Must Learn KQL Part 16: The Order/Sort and Top Operators

In this last part/chapter of the series-within-the-series for data view manipulation, I'm going to combine a
couple operator types. Looking at the title of this part/chapter, it may seem that I'm focused on three
operators (order, sort, and top), but really - like the Limit/Take operators from Part 9 - Order and Sort
provide functionally no difference. This is one of those situations, again, where it becomes personal
preference which one to use. In fact, when you read through the KQL reference doc it will tell you that...

The order operator is an alias to the sort operator.

...and then tell you to go check out the Sort operator page.

So, let's focus on that first.

The Order By/Sort By operator type enables you to sort data columns in the query results so you can view
the data first in a way that's more meaningful. For example, the following query (which you can use in the
KQL Playground https://aka.ms/LADemo), queries the SecurityEvent table for the last 7 days of data and
shows a random 100 records in descending order by the time each returned record was generated.

SecurityEvent //the table

| where TimeGenerated > ago(7d) //look at data in the last 7 days

| order by TimeGenerated desc //sort or order the TimeGenerated data column in descending order
| limit 100 //show 100 random records

There are a couple important things to call out about the Order By/Sort By operations:

1. You can Sort by multiple columns and each column by different directions. For example,
replace the Order By line above with the following: | order by TimeGenerated desc, Computer asc

2. The default view returned for data is descending order (desc).

3. If you are sorting by a data column that has null values (empty records), those will be displayed
first using the default order (desc).

You have the option with Order/Sort to directly - as part of the sorting - to adjust where the nulls show up
by adding either a nulls first or nulls last option as shown in the next example.

SecurityEvent //the table

| where TimeGenerated > ago(7d) //look at data in the last 7 days

| order by TimeGenerated desc nulls first //sort or order the TimeGenerated data column in descending order,
showing nulls first

| limit 100 //show 100 random records

TIP: If the null records thing bothers you like it does me (must be an OCD thing), you may want to modify
your query so that null records aren’'t returned at all. Here's a simple modification to the above query to
stop showing data if the Account data column is empty.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/sortoperator
https://aka.ms/LADemo

SecurityEvent //the table

| where TimeGenerated > ago(7d) and isnotnull(Account) //look at data in the last 7 days where the Account
column isn't empty

| order by TimeGenerated desc //sort or order the TimeGenerated data column in descending order
| limit 100 //show 100 random records

Just be careful with this. Sometimes, null columns can be an important delimiter.

Lastly, to continue to improve and hone your query knowledge - particularly for efficiency - the Top
operator can be used to simplify our example. Ascending and Descending order work the same for Top as
it does for Order/Sort, but we can combine expressions using Top, as is the case in the following example.
Plus, the Top operator is a great way to retrieve the most recent records instead of always relying on
random samples.

SecurityEvent //the table

| top 100 by TimeGenerated desc //Retrieving the top 100 records sorted in descending order by
TimeGenerated

See what | did there? The Top operator is performing, essentially, the same operation as before, but it has
simplified the query that it is required. In this case, though, I'm returning top values instead of the random
ones that the Limit operator supplies. Top also provides the same options as Order/Sort for null values, so
you can choose where to place the empty data columns in the display.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/topoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/topoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/topoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/topoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/limitoperator

Must Learn KQL Part 17: The Let Statement

Going way back to part 3 when | talked about the standard workflow, you might remember me saying...

Even though the structure can deviate, understanding a common workflow of a KQL
query can have powerful results and help you develop the logic needed to build your own
workflows when it's time to create your own queries.

Rod Trent, November 19, 2021

In this part/chapter of the Must learn KQL series, I'm going to focus on one of those deviations. As you'll
see, the Let statement can deviate from the norm because it's generally assumed that it is positioned
before the query event begins because of what it does.

So, what does the Let statement do?

The easiest way to put it is that it simply allows you to create variables. This makes sense to a lot of folks
who script or program and it's not dissimilar.

These variables are stored in memory during query execution and can be used throughout the rest of the
query. It's considered a best practice and is used for developing better performing queries and query code
re-use.

Most generally the Let statement will show up at the beginning of the main query, as shown in the
following slight modification of the original workflow we talked about in Part 3.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://azurecloudai.blog/2021/11/19/must-learn-kql-part-3-workflow/?WT.mc_id=m365-0000-rotrent

semicolon

Normal location of the Let statement

Another important thing to note is that the statement must be finalized. It is a statement, after all. The Let
statement ends with the semicolon (;) character. This tells the query engine that the variable has been
created and needs to be stored before carrying on with the rest of the query.

The best way to understand this is to just dig into some examples. Please use the KQL Playground
(https://aka.ms/LADemo) to get hands-on for the following types of Let statements.

Creating Variables from Scratch

The first method of using the Let statement is simply to generate your own data. In the following example,
I've created a timeOffset variable that provides a time value of 7 days, I've created another variable

called discardEventID that sets our Event ID to 4688 which records when a new process on a computer has
been spawned.

The timeOffset is used to create a time range of between 7 and 14 days in which to look at data.
The discardEventID is used to show everything BUT 4688 in the results.

let timeOffset = 7d; //Setting the offset variable

let discardEventld = 4688; //assigning new process as the event ID

SecurityEvent //the table

| where TimeGenerated > ago(timeOffset*2) and TimeGenerated < ago(timeOffset) //Setting a specific time
range of between 7 and 14 days

| where EventID != discardEventld //showing all events but 4688

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/letstatementworkflow-1.png?ssl=1

Creating Variables from Existing Data

Another type of Let statement is one that pulls data from existing tables. Essentially, you turn the results
of a query into a variable. The following example assigns one query to the login variable. The second
query assigns results to the logout variable. And, then to wrap up the full results, the query then merges
(joins - which I'll cover just a bit later in this series) both variables (login and logout) to show login and
logout times for all accounts.

let login = SecurityEvent //Setting the login variable based on a full query

| where TimeGenerated > ago(1h) //look at records in the last hour

| where EventID == '4624" //setting the event ID to successful login

| project Account, TargetLogonld, loginTime = TimeGenerated; //creating the full output, notice the semicolon
to end the let statement

let logout = SecurityEvent //Setting the logout variable based on a full query

| where TimeGenerated > ago(1h) //look at records in the last hour

| where EventID == "4634" //setting the event ID to successful logoff

| project Account, TargetLogonld, logoutTime = TimeGenerated; //creating the full output, notice the
semicolon to end the let statement

login //Accessing the login output

| join kind=leftouter logout on TargetLogonld //joining login output with logout output

| project Account, loginTime, logoutTime //Showing login and logout times for each account

Creating Variables from Microsoft Sentinel Watchlists

And, finally, Microsoft Sentinel customers should know that using the Let statement enables them to use
the Watchlist feature with their Analytics Rules.

Now, | apologize for this, but the following examples cannot be used with the KQL Playground
(https://aka.ms/LADemo) because the KQL Playground is not enabled for Microsoft Sentinel. As a
Microsoft Sentinel customer, you can use these in your own Sentinel environment. However, notice that |
have a Watchlist called FeodoTracker - you probably don't. Also, my FeodoTracker Watchlist has a data
column called Dst/P (destination IP address) - you probably don't.

However, | wanted to include these examples for those working with Watchlists. These examples
represent Watchlist basics. The Let statement is used to build a variable for data that exists in the
Watchlist. In the first example, I'm looking for IPs that exist (in) in the Watchlist. In the second one, I'm
looking for IPs that don't (lin) exist in the Watchlist.

And, while not part of our Let statement topic, the last two examples show how to call Watchlist data in
the midst of the query instead of assigning variable. Best practice is to use the Let statement, but I've
supplied these examples to show that it's possible.

//Watchlist as a variable, where the requested data is in the list
let watchlist = (_GetWatchlist('FeodoTracker') | project DstIP);
Heartbeat

| where ComputerIP in (watchlist)

//Watchlist as a variable, where the requested data is not in the list

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://aka.ms/LADemo
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/letstatement

let watchlist = (_GetWatchlist('FeodoTracker') | project DstIP);
Heartbeat
| where ComputerIP !in (watchlist)

//Watchlist inline with the query, where the requested data is in the list
Heartbeat
| where ComputerIP in (

(_GetWatchlist('FeodoTracker')

| project DstIP)

)

//Watchlist inline with the query, where the requested data is not in the list
Heartbeat
| where ComputerIP !in (

(_GetWatchlist('FeodoTracker")

| project DstIP)

)

Not familiar with Microsoft Sentinel Watchlists or what to do with your Let statement for Watchlists after
you create it? See: Use watchlists in Microsoft Sentinel

https://docs.microsoft.com/en-us/azure/sentinel/watchlists

Must Learn KQL Part 18: The Union Operator

As | did with parts/chapters 13-16 of this series for the series-within-the-series for data view manipulation,
this part/chapter and the next form another mini-series of sorts. The Union and Join operators are
important parts of the KQL journey as they represent opportunities to combine data from tables in
different ways.

Before jumping directly off into talking about the Union operator, | think it's best to start with describing
the differences between Union and Join. Knowing the differences will allow you to determine which one to
use for which scenario.

Union allows you to take the data from two or more tables and display the results (all rows from all tables)
together. Join, on the other hand, is intended to produce more specific results by joining rows of just two
tables through matching the values of columns you specify. You'll see the differences once we get through
this mini-series, and you can get hands-on with the examples. | highly suggest taking the examples from
this part/chapter and running them against the examples of Part 19 on the Join operator to get a proper
comparison.

There's a lot to the Union operator, so | suggest reviewing the reference page for all additional options,
including things like kind=inner(common columns), outer (all columns- default), and isfuzzy. I'll discuss Union
more in the Advanced series, Addicted to KQL, but for our purposes for the Must Learn KQL journey
what's important to know are the following;:

« Union supports wildcard to union multiple tables (union Security*)

e Union can be used to merge tables from different Log Analytics Workspaces (or clusters)

For most of your operations in the Microsoft security tools like Microsoft Sentinel for creating Analytics
Rules (covered in Part 20, the last part/chapter of the Must Learn KQL series), you'll make use of the Join
operator because of its ability to hone directly into specific results. Union, though, is an important tool for
hunting in Microsoft Sentinel and Advanced Hunting in Defender.

To get started with the Union operator, use the following examples in the KQL Playground
(https://aka.ms/LADemo).

The following query merges the SecurityEvent and Heartbeat tables and then displays each hostname
(computer) stored in both tables and how many times each computer is recorded for some sort of activity.

SecurityEvent //the table
| union Heartbeat //merging SecurityEvent table with the Heartbeat table
| summarize count() by Computer //showing all computers from both tables and how many times

This next query example is the same as before but merges with an additional table (SecurityAlert) to show
the data from three tables instead of two.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/unionoperator?pivots=azuredataexplorer
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/joinoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/unionoperator?pivots=azuredataexplorer
https://aka.ms/Addicted2KQL
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/joinoperator
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/joinoperator
https://aka.ms/LADemo

SecurityEvent //the table

| union Heartbeat, SecurityAlert //merging SecurityEvent table with the Heartbeat table and SecurityAlert
| summarize count() by Computer //showing all computers from all tables and how many times they are
referenced

The following example introduces a couple changes to the first two queries in that it merges all tables that
start with ‘Sec’ (notice the wildcard character) and sorts the computers in alphabetical ascending order (the
last line).

SecurityEvent //the table
| union Sec* //merging together all tables beginning with 'Sec'

| summarize count() by Computer //showing all computers from all tables and how many times they are
referenced

| sort by Computer asc //displaying Computer names in ascending order

Must Learn KQL Part 19: The Join Operator

As noted in part/chapter 18, this mini-series on merging data contains two different principles. Reiterated
from the last part/chapter...

Union allows you to take the data from two or more tables and display the results (all
rows from all tables) together. Join, on the other hand, is intended to produce more
specific results by joining rows of just two tables through matching the values of columns

you specify.

There's quite a bit more to the Join operator (and Join, in general) than I'll cover in this part/chapter. | want
to make sure to keep this focused on those things necessary to help build your first Microsoft Sentinel
Analytics Rule in the final part/chapter of this series.

Join, merges the rows of two tables (left table and right table) to form a new pseudo-table by matching
values of the specified column(s) from each table. Just like any other query language’s Join, the KQL Join
operator supports the following Join methods along with some additional nuanced options - with
innerunique Join being the default.

LEFT JOIN
LEFT JOIN FULL OUTER JOIN (if NULL)

RIGHT JOIN
INNER JOIN RIGHT JOIN (if NULL)

Joining tables and data

The syntax for the Join operator is as follows:

LeftTable
|join [JoinParameters] (RightTable) onAttributes

Use the following example in the KQL Playground (https://aka.ms/LADemo). This example joins together
the SecurityEvent and Heartbeat tables on the common Computer column. It then filters all Computers by
the 4688 Event ID (newly spawned process) and shows the Computer name and the installed OS and
versioning.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/joinoperator?pivots=azuredataexplorer
https://aka.ms/LADemo
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/joins.png?ssl=1

SecurityEvent //table name

| join Heartbeat on Computer //joining SecurityEvent with Heartbeat on the common Computer column
| where EventID == "4688" //Looking for Event ID for new process

| project Computer, OSType, OSMajorVersion, Version //Displaying data from both tables

Your results should look like the following:

Time range : Last 24 hours = Share MNew alert rule Export s Pinto Format query
SecurityEvent //table name
? | join Heartbeat on Computer //joining SecurityEvent with Heartbeat on the common Computer column

| where EventID == "4683" //Looking for Event ID for new process
| project Computer, 0SType, OSMajorVersion, Version //Displaying data from both tables

Results Chart Columns (®) Group columns
Completed. Showing partial results from the last 24 hours.

Computer YW OSTyp Y OSMajorVersion Y Version

JBOX00 Windows 10 10.20.18064.0
DCO0.na.contosohotels.com Windows 10 1.0.12.0
DCOl.na.contosohotels.com Windows 10 10.20.18064.0
DCOl.na.contosohotels.com Windows 10 1.0.12.0
SQL12.na.contosohotels.com Windows 10 10.20.18064.0
DCO0.na.contosohotels.com Windows 10 10.20.18064.0
DCTl.na.contoschotels.com Windows 10 10.20.18053.0
DC01.na.contosohotels.com Windows 10 1.0.12.0
JBOX00 Windows 10 1.0.12.0
JBOX10 Windows 10 10.20.18053.0

DC1l.na.contosohotels.com Windows 10 1.1.2.0

Results of Joining by the Computer Column

Here's something fun. To change the kind (or, flavor) of Join, you simply add a kind option like so.

| join kind=inner Heartbeat on Computer

https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/joinsimilar.png?ssl=1

Changing the flavor of join will alter how and what data is displayed. Changing our original Join query
example with the inner flavor or join will produce results like the following (note the results display
difference from before)

Time range : Last 24 hours = : Share Mew alert rule Export 5 Pinto Format query

SecurityEvent //table name
2 | jein kind=inner Heartbeat on Computer //joining SecurityEvent with Heartbeat on the common Computer column
he EventID == "4688" f/Looking for Event ID for new process
ct Computer, 0SType, OSMajorVersion, Version //Displaying data from both tables

Results Chart Columns (®) Group columns

Completed. Showing partial results from the last 24 hours.

RETAILVMO1 Windows 10.20.18053.0
RETAILVMO1 Windows 10.20.18053.0
RETAILVMO1 Windows 10.20.18053.0
RETAILVMO1 Windows 10.20.18053.0
RETAILVMO1 Windows 10.20.18053.0
RETAILVMO1 Windows 10.20.18053.0
RETAILVMO1 Windows 10.20.18053.0
RETAILVMO1 Windows 10.20.18053.0

RETAILVMO1 Windows 10.20.18053.0

Try the following on your own in the KQL Playground (https://aka.ms/LADemo):

| join kind=innerunique Heartbeat on Computer

| join kind=leftouter Heartbeat on Computer

| join kind=rightouter Heartbeat on Computer

| join kind=fullouter Heartbeat on Computer

In the advanced series, Addicted to KQL, I'll dig deeper into the other use cases for Join. If you're champing
at the bit to learn more now and happen to be a Star Wars nut, check out Jing's KQL Tutorial on the Join
operator on YouTube: KQL Tutorial Series | Joining Tables (Demo) | EP5

https://aka.ms/LADemo
https://aka.ms/Addicted2KQL
https://youtu.be/66UDqdILgpc

Must Learn KQL Part 20: Building Your First Microsoft Sentinel
Analytics Rule

The intent of this series has been to enable you to understand the structure, flow, capability, and
simplicity of the KQL query language. Way back in part/chapter 3, | said...

| tell customers all the time that it's not necessary to be a pro at creating KQL queries. It's
OK not to be a pro on day 1 and still be able to use tools like Microsoft Sentinel to monitor
security for the environment. As long as you understand the workflow of the query and
can comprehend it line-by-line, you'll be fine. Because ultimately, the query is
unimportant. Seriously. What's important for our efforts as security folks is the results of
the query. The results contain the critical information we need to understand if a threat
exists and then - if it does exist - how that threat occurred from compromise to impact.

And that remains the case. I'll dig much, much deeper into KQL in the Addicted to KQL series, but for our
purposes here in the Must Learn KQL series, you should have become comfortable with eyeing a query and
understanding it's intent line-by-line. If you're just joining us because this part/chapter has the

words Microsoft Sentinel and Analytics Rules on it, you're starting at the wrong spot. | entreat you to jump
back to the beginning and ingest this series in the methodical, logical manner it was intended.

(If you have suggestions for the TOC for the Addicted to KQL series, let me know. Current TOC is
here: https://aka.ms/Addicted2KQL)

Keeping with the original plan to build your first Analytics Rule, we're going to work together to
understand an existing Analytics Rule example that you can use in your own Microsoft Sentinel
environment. This example takes many of the concepts and operators we've learned together on this
journey, so you should be intimately familiar with them. And, if all works well, you should be on your way
to mastering KQL and hungry for what's next. If you're like me, this stuff just geeks you out. You may find
yourself thinking about Joins and Summarizations at strange times, but don't fret - you are not alone. KQL
can do that. | regularly zone off thinking about table schema while the wife is telling me something that's
probably important. Heck even my email signature is homage to KQL:

Rod Trent

| Title =
Focus 'Mi
Group "C+E

[
Offices 513-826-9255,
Email:

Twitter:

Blog:

Linkedin:

Sentinel News:
Defender News:

My email signature - make it your own!

https://aka.ms/Addicted2KQL
https://twitter.com/rodtrent
https://aka.ms/Addicted2KQL
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/kqlsignature.png?ssl=1

Feel free to steal that, by the way.
Analytics Rule

So, let’s take a well-established Analytics Rule and pick it apart. This one is intended to capture individuals
that run Cloud Shell in the Azure portal. This query/rule needs to be run in your own Microsoft Sentinel
environment and not in the KQL Playground (https://aka.ms/LADemo). To get results, someone must have
run Cloud Shell in recent record.

Run Cloud Shell

Cloud Shell activity is logged in the AzureActivity table. So, our first line of the query will be:

AzureActivity //the table - this is where Cloud Shell activity is logged

Once we've identified the table we need to query against, as per the Workflow discussion in part/chapter
3, it's time to start filtering the data. So, using the Where operator covered in part/chapter 8, let's dig into
what exactly identifies Cloud Shell usage.

In the filtering section of the query in the next samplet, we're looking for CLOUD-SHELL in the
ResourceGroup data column, but then digging even deeper to get more accurate results by ensuring the
activity is related to a successful Start of storage creation. Anytime Cloud Shell is executed, storage is
created in Azure.

| where ResourceGroup startswith "CLOUD-SHELL" //filtering for Cloud Shell

| where ResourceProviderValue == "MICROSOFT.STORAGE" //To not mistake this for some other Cloud Shell
operation, also filtering on MICROSOFT.STORAGE. Storage is created anytime Cloud Shell runs.

| where ActivityStatusValue == "Start" //Making sure that the activity is the spawning of a new Cloud Shell
instance

The next thing we need to do is determine how many times the individual that has been captured has run
Cloud Shell. We do this with the Summarize operator as covered in part/chapter 11.

| summarize count() by TimeGenerated , ResourceGroup , Caller, CallerlpAddress , ActivityStatusValue
//Getting a count of how many times each individual has run Cloud Shell

The last thing we need to do is take a couple pieces of important information and assign them as Entities.
Entities are important for investigations. Without Entities, such as users, IP addresses, hostnames, file
hashes, etc. we would have no evidence, or no clues with which to progress through an actual
investigation. There are different ways to do this in the Analytics Rule wizard in Microsoft Sentinel, but you

https://aka.ms/LADemo
https://azurecloudai.blog/2022/01/05/must-learn-kql-part-11-the-summarize-operator/?WT.mc_id=m365-0000-rotrent
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/cloudshell.png?ssl=1

can also assign Entities in your KQL query by using the Extend operator to create custom data views - as
covered in part/chapter 13.

Microsoft Sentinel allows for four different custom entities in the queries. Those are:

e AccountCustomEntity - the user

o IPCustomEntity - the IP Address

e HostCustomEntity - the host (computer/device)

o URLCustomEntity - the capture URL the user accessed

Now, there's a much deeper discussion that can be had on Entities because much has changed (and is
constantly changing) for this area in Microsoft Sentinel. See the following for more:

o Microsoft Sentinel entity types reference

o Classify and analyze data using entities in Microsoft Sentinel

But, for our purposes of learning KQL and applying the series’ knowledge, let's stick with custom entities.
Shown in the example below, we are assigning the known data columns of Caller (user name) and
CallerlpAddress (user's IP) to the custom entities. This will capture the user and the user’s IP address and
place them in the Entities list associated with the Microsoft Sentinel Incident once an alert is generated
based on our KQL logic.

| extend AccountCustomEntity = Caller //Assigning the Caller column - name of person - to
AccountCustomEntity - this is what is used for the User Entity in Microsoft Sentinel Incidents

| extend [PCustomEntity = CallerIpAddress //Assigning the CallerIpAddress column - IP Address of user's
system - to IPCustomEntity - this is what is used for the IP Entity in Microsoft Sentinel Incidents

So, our full and complete KQL query to use when creating the Analytics Rule is:

AzureActivity //the table - this is where Cloud Shell activity is logged

| where ResourceGroup startswith "CLOUD-SHELL" //filtering for Cloud Shell

| where ResourceProviderValue == "MICROSOFT.STORAGE" //To not mistake this for some other Cloud Shell
operation, also filtering on MICROSOFT.STORAGE. Storage is created anytime Cloud Shell runs.

| where ActivityStatusValue == "Start" //Making sure that the activity is the spawning of a new Cloud Shell
instance

| summarize count() by TimeGenerated , ResourceGroup , Caller, CallerlpAddress , ActivityStatusValue
//Getting a count of how many times each individual has run Cloud Shell

| extend AccountCustomEntity = Caller //Assigning the Caller column - name of person - to
AccountCustomEntity - this is what is used for the User Entity in Microsoft Sentinel Incidents

| extend [PCustomEntity = CallerIpAddress //Assigning the CallerIpAddress column - IP Address of user's
system - to [PCustomEntity - this is what is used for the [P Entity in Microsoft Sentinel Incidents

Use the following instructions to create an Analytics Rule with this query: Create custom analytics rules to
detect threats

And if someone in your environment has run Cloud Shell recently, an alert and Incident will be generated
that looks similar to the following:

https://azurecloudai.blog/2022/01/18/must-learn-kql-part-13-the-extend-operator/?WT.mc_id=m365-0000-rotrent
https://docs.microsoft.com/en-us/azure/sentinel/entities-reference
https://docs.microsoft.com/en-us/azure/sentinel/entities
https://docs.microsoft.com/en-us/azure/sentinel/detect-threats-custom
https://docs.microsoft.com/en-us/azure/sentinel/detect-threats-custom

Incident

Refresh

Cloud Shell Execution
-‘ Tirneline Alerts B kraries Entites Comaments

Timelire conbent : ANl Severity - All Tactics - All
Febds W) Cloud Shell Execution W Cloud Shell Execution
333 PM Low | Detected by Microsoft Sentined | Tactics: -8 PreAttack

Description
Eeep track of when Cloud Shell is run and who did it.

Rule name

Updates.

Hey, look! Cloud Shell!

OK. Here’s our very last extra credit together for this series and it's a reminder of some other things we've
done together along the way. There's a bit more that we can do with this KQL query and Analytics Rule to
make it a bit more intelligent. What if there are certain “trusted” people in our organization who should be
able to run Cloud Shell without being captured as a potential suspect?

By creating a Watchlist (see: Create watchlists in Microsoft Sentinel) and modifying our KQL query slightly,
we can ensure that only those individuals who shouldn’t be able to run Cloud Shell are the only ones
captured in our alerts.

How do we do that? Let's think back to part/chapter 17 for the Let statement and the section on Creating
Variables from Microsoft Sentinel Watchlists and part/chapter 8 when we discussed the allowable string
and numeric predicates for the Where operator.

The following example shows those adjustments. | have a Watchlist in my environment
called TrustedUsers that has a data column called Username. | maintain this Watchlist so that it contains the
most current list of trusted users.

https://docs.microsoft.com/en-us/azure/sentinel/watchlists-create
https://i0.wp.com/azurecloudai.blog/wp-content/uploads/2022/02/cloudshellexecutionincident.png?ssl=1

let watchlist = (_GetWatchlist('TrustedUsers') | project Username); //Putting the Usernames from our
Watchlist into memory to use later

AzureActivity //the table - this is where Cloud Shell activity is logged

| where Caller !in (watchlist) //filtering out our trusted users

| where ResourceGroup startswith "CLOUD-SHELL" //filtering for Cloud Shell

| where ResourceProviderValue == "MICROSOFT.STORAGE" //To not mistake this for some other Cloud Shell
operation, also filtering on MICROSOFT.STORAGE. Storage is created anytime Cloud Shell runs.

| where ActivityStatusValue == "Start" //Making sure that the activity is the spawning of a new Cloud Shell
instance

| summarize count() by TimeGenerated , ResourceGroup , Caller, CallerIpAddress, ActivityStatusValue
//Getting a count of how many times each individual has run Cloud Shell

| extend AccountCustomEntity = Caller //Assigning the Caller column - name of person - to
AccountCustomEntity - this is what is used for the User Entity in Microsoft Sentinel Incidents

| extend [PCustomEntity = CallerIpAddress //Assigning the CallerlpAddress column - IP Address of user's
system - to IPCustomEntity - this is what is used for the IP Entity in Microsoft Sentinel Incidents

Take the Assessment!

Did you complete the entire series?!! Well, congratulations! When you're ready, take the assessment and
receive a bona fide certificate!

The assessment is 25 questions taken directly from the Must Learn KQL series. So, you can take
advantage of the open book test, or challenge yourself by attempting to pass without help. Based on the
honor system, you can miss 5 questions (80%). Once completed, send an email request to
MustLearnKQL@sixmilliondollarman.onmicrosoft.com and request your certificate.

Take the assessment: Must Learn KQL Assessment

(https://forms.office.com/r/6MN69VXLUQ)

KQL IS LIFE

CERTIFICATE

Of Completion

This is to acknowledge that

Has Completed the Must Learn KQL training and
passed the assessment

Dated:

AKA.MS/MUSTLEARNKQL

Empower every person and
every organization on the

@ ® Approved by

planet to learn KQL.

mailto:MustLearnKQL@sixmilliondollarman.onmicrosoft.com
https://forms.office.com/r/6MN69VXLUq

Prepare for What’s Next!

Ready for more?

Check out the advanced KQL series called: Addicted to KQL

& //Summarize the permissions granted to y Unfitied

\ (deletedapps)

https://aka.ms/Addicted2KQL

LASTLY

Thanks so much for your interest in this series and in KQL. Many have completed the series and many
more will go through it. This series is - and always will be - a free series. Consider giving to others as you
give this newfound knowledge to yourself.

There's also a merch store where all proceeds go to St. Jude Children's Research Hospital.
(https://www.stjude.org/)

Check it out: MUST LEARN KQL STORE

(https://must-learn-kgl.creator-spring.com/)

There's even an “| passed!” version of the mug...

KQL IS LIFE

CUP

Of Completion

| Completed the Must Learn KQL training and
passed the assessment!

AKA.MS/MUSTLEARNKQL
Empower every person and
every organization on the

planet to learn KQL.

...along with a myriad of constantly new items including laptop stickers, t-shirts, hoodies, etc.
I'll talk to you soon.

-Rod

https://www.stjude.org/
https://www.stjude.org/
https://must-learn-kql.creator-spring.com/

